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This paper addresses the problem of optimal planning of a line for a container shipping company. Given

estimated weekly splittable demands between pairs of ports and bounds for the turnaround time, our goal is

to determine the subset of ports to be called and the amount of containers to be shipped between each pair

of ports, so as to maximize the profit of the shipping company. In order to save possible leasing or storage

costs of empty containers at the respective ports, our approach takes into account the repositioning of empty

containers.

We first propose two new MIP formulations that are tailored for barge container ship routing in the

inland waterway transport. We then demonstrate that the models can be extended to general maritime

shipping given the outbound-inbound principle. On the publicly available set of benchmark instances for

barge container routing, our models significantly outperform the existing approaches from the literature.

We also propose some variants of the problem that are of interest for practitioners in the domain, including

optimization of the turnaround time, allowing multiple round-trips, and dealing with unsplittable demands.

Numerical experiments are provided to compare the computational performance of the models and the

impact of both empty container repositioning and unsplittable demands on the total profit.

Key words : Integer Linear Programming, Sea and Inland Waterway Transport, Liner Shipping Network

Design, Empty Container Repositioning, Barge Container Ship Routing

1. Introduction

Liner shipping network design is a family of important and challenging problems in sea and inland

waterway transport dealing with a creation of a (set of) sailing route(s) for a designated fleet
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to transport multiple commodities. During the last decades many variants of the liner shipping

network design have been addressed in the literature (see, e.g. recent surveys given in Meng et al.

(2014), Christiansen et al. (2013), Brouer et al. (2014)). In general, liner shipping companies have

to design lines, i.e., sequences of calling ports with a given schedule that are operated periodically.

In this article we consider the tactical part of this decision making process in which a route for

a given liner container ship has to be defined. We assume a predetermined ordering of ports for

the outbound-inbound trips, which is the natural way of scheduling routes in the inland waterway

transport, along a (straight) coastline, or on routes with given directions (e.g., East-West trades).

The port calling sequence must start at and return to the first port (in case of barge transport, it

is a sea port, located at a river mouth, see Figure 1). The liner ship must stop at the last port (in

barge transport, it is the furthest port upstream) where it changes its direction. For a given liner

ship, the problem consists of selecting a subset of calling ports upstream and downstream and,

given weekly (splittable) demands of containers between all pairs of ports, deciding what amount of

that demand will be shipped in order to maximize total profit within the given planning horizon. In

addition to revenues associated with demand units (i.e., containers) between pairs of ports, one has

to consider operational costs that include fuel cost, port dues and cargo handling cost. Moreover,

the ship must complete its route within a given time interval. Liner shipping network design under

these assumptions has been introduced in the seminal paper by Rana and Vickson (1988). Since

then, these concepts have been extended by introducing new and important aspects relevant in the

maritime or inland waterway shipping (see Section 2 for the detailed literature overview). However,

what remained insufficiently studied in the literature is the important and challenging question

studied in the present article: how to develop an integrated approach to design shipping routes

while taking into account empty container balancing and repositioning at the same time?

According to UNCTAD (2015), the containerized cargo flows on major container trade routes are

characterized by a huge imbalances between inbound and outbound directions, see also Song and

Dong (2015). In addition, since the flow of containers has to be balanced at each port, these imbal-

ances result in empty container leasing or storing at respective ports. Shipping the empty containers

between the ports instead, has a strong impact on cost calculation. Hence, when determining the

liner shipping routes, in some cases the profit of a shipping company can be significantly improved

if empty container flows are treated adequately and if their flow is planned simultaneously with

the design of the shipping routes. Due to the global financial crisis and the turmoil in global sea

fright, the container shipping business is hardly profitable (see Glave, Joerss, and Saxon (2014)).

For example, Hanjin, which was the world’s seventh largest container shipper, went bankrupt in

August 2016. It is therefore clear that creating profitable lines becomes a key competitive advantage

in container shipping business.
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Figure 1 An example of liner shipping along a river with n ports.

As mentioned above, the basic problem of routing a single container ship while maximizing profit

under a knapsack-type time constraint has been studied in Rana and Vickson (1988). The major

assumption in this setting is that the ordering of ports for a given ship is predetermined. To our

knowledge, an integrated approach to design the optimal ship route involving empty container

repositioning was considered for the first time in Shintani et al. (2007). In that article, the authors

assume that a pre-ordered list of ports is given and that all container demand emanating from a port

must be satisfied if that port is called. However, in their model, a ship can change direction multiple

times (at some intermediate ports of call) before returning to the initial port. A problem variant

for barge container shipping with outbound-inbound principle and empty container repositioning

has been studied in Maraš et al. (2013).

Contributions: In this article, we propose two new MIP formulations that explicitly take advan-

tage of the outbound-inbound principle. This setting is particularly important for barge container

shipping, but it is also relevant in maritime routing when the precedence relations between ports are

given (e.g., when shipping containers along a coast). In contrast to the existing models from the lit-

erature (that require arc-variables for modeling the routes), both new models utilize node-variables

for the route design. The first formulation requires arc-variables for modeling empty containers.

The second formulation is more compact as it utilizes node-variables only and handles empty con-

tainers as a single commodity. An equivalence of the two models, concerning the strength of their

LP relaxations, is shown. The two models first apply to the case where the distance traversed

between the starting and last port remain constant whatever the port calling sequence, as this is

the case for barge container shipping along a river. We then extend our models to the general case

of Rana and Vickson (1988) where shortcuts between ports are allowed (and the total traversed

distance can be shortened if some of the ports are not called).
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We furthermore show that the problem remains strongly NP-hard, even after relaxing many of

its constraints, and we also discuss a special polynomially solvable case.

Finally, we show how to extend the new MIP models so as to (1) optimize the size of the fleet

and maximize the profit simultaneously, (2) find the optimal number of round-trips within the

planning horizon, or (3) deal with unsplittable demands. With the extension (2) we are addressing

the same problem as the one described in Rana and Vickson (1988), while additionally taking the

empty container balancing and repositioning into account.

Our computational study is conducted on a set of benchmark instances of barge container

shipping from the literature. Our new modeling approach based on node-variables for route design

enables us to significantly reduce the computational time and to solve to optimality all instances

with up 25 ports in a few seconds only, thus drastically outperforming the previous state-of-the-art

model. For the more challenging variant with unsplittable demands, our approach is able to

compute (near) optimal solutions within a short computing time.

The paper is structured as follows. Section 2 gives a detailed overview of the related literature. We

then focus on the Barge Container Shipping Problem (BCSP) and in Section 3 we provide the formal

problem definition and the NP-hardness proof. Section 4 provides the two new MIP formulations,

together with the proof of equivalence between the two models. We then show in Section 5 how

to adapt our models for maritime shipping (while assuming the ordering of ports to be given).

In this section we study the various extensions mentioned above. Computational experiments on

benchmark instances are given and analyzed in Section 6, whereas Section 7 concludes the paper.

2. Related Work

A classification of optimization problems for liner container ship routing was given in the recent

surveys of Christiansen et al. (2013) and Meng et al. (2014). Following their classification, our

problem falls into the category Liner Container Shipping Network Design (single route or several

routes without transshipment). These two surveys, along with a recent paper Brouer et al. (2014),

cite a dozen of papers published in the last decade in that specific category. An older survey by

Christiansen, Fagerholt, and Ronen (2004) provides a list of papers on general ship routing and

scheduling.

The recent article by Brouer et al. (2014) provides an excellent overview of the major logis-

tics aspects and challenges for the Operations Research community in the liner shipping business.

The authors present a rich integer programming model based on services that constitute the fixed

schedule of a liner shipping company (multi-route multi-vessel case). In addition, a publicly avail-

able benchmark suite of data instances is created. Unfortunately, the model provided by Brouer
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et al. (2014) does not take empty container repositioning into account, and, consequently, their

benchmark suite does not contain cargo handling cost associated to empty containers, nor assumes

that the pre-ordering of ports that could be called is given.

General maritime route design with outbound-inbound principle and without transshipment.

The previously cited paper of Rana and Vickson (1988) falls into this category in which no

transshipment is allowed, i.e., exchanging containers between two ships is not an option. In Rana

and Vickson (1991) the authors extend their previous model to designing multiple ship routes for

a heterogeneous fleet. In both papers it is assumed that the order of ports that could be called

is predetermined, with a fixed starting and ending port. In Rana and Vickson (1988) a MIP

formulation has been proposed for simultaneously optimizing the total profit and the number of

round trips of the ship in a week, the latter being represented by a decision variable α. Although

this leads to a quadratic model, the variable α can only take a few integer values, so that the

authors propose to solve the problem by enumerating all possible values of α. This boils down to

solving the same model for each α but with a different constraint concerning the total allowed

time per route. The authors apply Benders decomposition technique, whereas in the multi-vessel

extension of Rana and Vickson (1991) Lagrangian relaxation and decomposition is involved.

Liner shipping network design with empty container repositioning. To our knowledge, the route

design with empty container repositioning is considered for the first time in Shintani et al. (2007).

In this problem variant, pairwise demands are given and profit is to be maximized. In addition,

all the cargo traffic between two ports must be satisfied if the ports are called and the ship can

change its direction multiple times (at some intermediate ports) before returning to the initial

port, which differs from Rana and Vickson (1988). The authors propose a genetic algorithm to find

heuristic solutions. This algorithm explores possible calling sequences of ports, and solves an LP

for each given port sequence found during the search, involving empty container variables between

two ports. When going in the outbound (or inbound) direction, the authors bring the argument

that the ship is allowed to change its direction and move backward to an earlier port, for a matter

of empty container repositioning. Such flexibility may indeed provide a more economical solution,

but, to our knowledge, it is less accepted by the shipping companies, which is why in our article

we keep the assumption that the strict outbound-inbound principle has to be respected.

Table 1 provides a classification of papers on liner shipping route design with empty container

repositioning that have been published since the work of Shintani et al. (2007). The column “ports

selection” refers to papers in which the selection of ports is part of the routing problem. Note that

in some of these articles, the calling ports are already given (see the column “pre-specified line

services”), and the major decisions concern the shipping of commodities and empty containers. The
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Table 1 Classification of route design problems with empty container repositioning

Paper Empty cont. ports pre-specified inbound single /
repositioning selection line services outbound multi

Shintani et al. (2007) × × ×a single
Maraš et al. (2013) × × × single
Braekers, Caris, and Janssens (2013) × × ×b multi
An, Hu, and Xie (2015) × × × multi
Dong and Song (2009) × × ×c multi
Meng and Wang (2011) × ×d multi
Brouer, Pisinger, and Spoorendonk (2011) × × multi
Huang, Hu, and Yang (2015) × × multi

a : possibility of ship turning back; b : first and last ports not pre-specified; c : network can be slightly more

complex than a line; d: pre-specified set of potential routes.

“inbound-outbound” column indicates the papers that assume inbound-outbound routing, and the

“single/multi” column states whether the model deals with the route design for a single ship, or

for a fleet of ships.

In Dong and Song (2009), a multi-route multi-vessel problem is considered. In Meng and Wang

(2011), the authors design a hub-and-spoke network with multiple routes. In Brouer, Pisinger, and

Spoorendonk (2011), the routes are given, and the problem consists of determining the amount

of containers to be shipped along each route (multi-flow in a network is solved by Dantzig-Wolfe

decomposition). Multi-route planning with cost minimization is studied in Huang, Hu, and Yang

(2015).

The remaining papers from Table 1 deal with barge and inland waterway liner transportation

and will be addressed in the following paragraph.

In all papers cited in Table 1, arc variables (associated with pairs of ports) are used to design

the ship route and measure the total trip duration that should not exceed the given time limit.

That may appear natural when modeling maritime routes since making a shortcut between two

ports by skipping an intermediate port could shorten the length of the route, depending on the

location of the ports. However, let us note that when routing a barge container ship along a river,

skipping a port along the route does not shorten the distance, hence in this particular setting

there is no direct justification for using arc variables to design the ship route.

Liner shipping network design in the inland waterway transport. We now review papers specif-

ically dealing with inland waterway shipping, since our generic model is particularly suited for

routing a barge container ship along a river. As in Rana and Vickson (1988), all these papers deal

with selecting the calling sequence of ports for a single line that should respect a predetermined

order, both in the outbound and inbound direction, while maximizing profit and respecting a given

time limit. The major difference to Rana and Vickson (1988) is that the location of ports along
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a river induces a fixed travel time between the starting and last port. In addition, as in Shintani

et al. (2007), the balancing and repositioning of empty containers is considered. In Maraš (2008),

the author proposes a MILP formulation with binary variables associated with each pair of ports.

This formulation, along with a MILP-based heuristic is implemented in Maraš et al. (2013) where

the authors managed to solve instances with up to 20 ports to provable optimality, but, typi-

cally, more than a day of computing was required to provide the optimal solutions. Other papers

specifically dealing with barge route design and inland waterway liner transportation with empty

container repositioning are Braekers, Caris, and Janssens (2013), Yang et al. (2014) and An, Hu,

and Xie (2015). The three later articles deal with multi-route multi-vessel optimization. The first

one considers the selection of unsplittable demands that maximizes profit, whether the other two

deal with covering demands at minimum cost. Note that all papers used arc variables, both for the

route design and the empty container repositioning, which does not exploit the line structure of

the route on a river.

3. Notation and Problem Definition

In this section we introduce the input parameters, provide a formal problem definition and discuss

the problem computational complexity.

The following input is given (where the units of measure used are hours [h], tons [t], twenty-foot

equivalent unit [TUE], kiloWatt [kW], kiloWatt hour [kWh] and US dollar [US$]):

• N = {1, . . . , n} : ordered set of n ports, where 1 is the starting port and n is the ending port

in the outbound direction; the ship should stop at port n and go back to port 1.

• Dij ∈Z+ : weekly expected number of full containers available to be transported between ports

i and j [TEU/week];

• C ∈Z+ : capacity of the ship [TEU]

• Pij ∈R+ : freight rate per container from port i to port j, i, j ∈N [US$/TEU]

• Fi : entry cost per call at port i, i∈N [US$]

• Lfi (U f
i ): loading (unloading) cost per full container at port i, i∈N [US$/TEU]

• Lei (U e
i ): loading (unloading) cost per empty container at port i, i∈N [US$/TEU]

• Li (Si): short-term leasing (storage) cost per empty container at port i, i∈N [US$/TEU]

• T li (T ui ): average loading (unloading) time per full container at port i, i∈N [h/TEU]

• T̃ li (T̃ ui ): average loading (unloading) time per empty container at port i, i∈N [h/TEU]

• T ai (T di ): stand-by time for arrival (departure) at port i, i∈N [h]

• Tmin: minimum allowed travel time [h]

• Tmax: maximum allowed travel time [h]

Additional parameters are:
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• dcc : daily time charter cost of a ship [US$/day];

• Pout : engine output (propulsion) [kW];

• l : distance between ending ports 1 and n [km];

• v1 (v2) : outbound (inbound) ship speed [km/h];

• fp (lp) : fuel (lubricant) price [US$/t];

• scf (scl) : specific fuel (lubricant) consumption [t/kWh];

• tl : total locking time at all locks between ports 1 and n [h];

• tb: total time of border crossings at all borders between ports 1 and n [h];

The case in which we allow to partially satisfy the demand Dij between ports i and j, is called

splittable demands in the following, while the case in which either zero or all Dij containers have

to be shipped is called unsplittable demands. In this article, both problem variants are addressed.

3.1. Formal Problem Definition

In the following, we first address the problem of the barge container liner shipping route design

along a river, as it was defined in Maraš et al. (2013). Later, in Section 5 we show how to extend

this problem into a more general setting.

Definition 1 (Barge Container Shipping Problem (BCSP)). Given the input parame-

ters described above, the BSCP asks to determine the sequence of calling ports, both in the out-

bound and inbound direction, and the number of full and empty containers to be shipped between

the ports, so as to maximize the profit, which is defined as the difference between the revenue for

shipping full containers, and the port call cost, cargo-handling cost, and bunker and capital costs,

see (1). Thereby, the following constraints need to be respected:

• The route must start at port 1 and must visit port n. Total turnaround time (including

traveling and service time, see (3)) must be between Tmin and Tmax,

• At each port i, if the total inflow of full and empty containers (counting the flow both in

the outbound and inbound direction) is not equal to the total outflow, the difference should be

balanced by either leasing or storing containers at that port (the balancing of empty containers

is explained in the next section). Alternatively, to save the latter cost, empty containers can be

transported on the ship.

• Containers can be transported either in the outbound or in the inbound direction; no mixing

is allowed, i.e., no container can be loaded in the outbound and unloaded in the inbound direction.

To define the profit function, let Nout ⊆N be the set of ports called in the outbound and Nin ⊆

N \ {n} the subset of ports called in the inbound direction and let N ′ =Nout ∪Nin. For any pair

of distinct ports i, j ∈ Nout or i, j ∈ Nin, let aij and bij denote the amount of full, respectively,
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empty containers shipped from i to j. Let ci and di be the number of empty containers leased,

respectively, stored at port i∈N . The profit function is then calculated as follows:∑
i∈N ′

∑
j∈N ′

aijPij−
∑
i∈N ′

∑
j∈N ′

aij
(
Lfi +U f

j

)
−
∑
i∈N ′

∑
j∈N ′

bij
(
Lei +U e

j

)
−
∑
i∈N ′

(Lici +Sidi)−
∑
i∈Nout

Fi−
∑
i∈Nin

Fi−K0. (1)

The first term denotes the revenue collected for shipping the full containers, which is followed by the

cargo-handling cost (that consists of: loading/unloading cost for full and empty containers, respec-

tively, and cost for storing/leasing of empty containers), and port call costs. Finally, K0 denotes

the fixed cost which is the sum of capital cost (the cost of the charter, including maintenance,

insurance, crew) and the bunker (fuel) cost for the whole route. The value of K0 is calculated as

follows (see Maraš et al. (2013)):

K0 = (dcc ·Tmax + Pout · (
l

v1
+

l

v2
) · (fp · scf+ lp · scl)) (2)

Note that, for barge container shipping, K0 is a constant, as the length l is simply the distance

between 1 and n, and it does not depend on the particular subset of calling parts. On the contrary,

in the maritime shipping, the route length can vary, and has to be calculated based on the sequence

of calling ports (we address this issue in Section 5.4).

To calculate the total turnaround time, we have to take into consideration the time for loading

and unloading full and empty containers at the respective ports, the time for arrival and departure

and the calling ports, and the fixed time T0:∑
i∈N ′

∑
j∈N ′

aij
(
T li +T uj

)
+
∑
i∈N ′

∑
j∈N ′

bij

(
T̃ li + T̃ uj

)
+
∑
i∈Nout

(
T ai +T di

)
+
∑
i∈Nin

(
T ai +T di

)
+T0 (3)

The value of Tmax is normally fixed to a multiple of 7 days, i.e., number of weeks. Note that, for

the given line that is operated periodically (i.e., on a weekly basis), the value of Tmax implicitly

determines the size of the fleet, i.e., for Tmax = 28 and the weekly schedules, a fleet of four ships is

needed to guarantee the service. Notice also that the total turnaround time is sometimes bounded

from below by the value of Tmin. Usually, the value of Tmin is close to Tmax (e.g., Tmin = Tmax− 1)

in order to avoid idle days for the ship, or waiting at the initial port that can be very expensive

for the shipping company. Again, the time T0 is a constant in the inland waterway shipping, and it

varies in the maritime shipping. It depends on the length l, and it includes also the border crossing

times (if any) and the locking times (on the river):

T0 = (
l

v1
+

l

v2
+ 2tl + 2tb) (4)
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Finally, observe that the profit calculated by (1) is weekly profit for the shipping company for

the whole fleet. Consider an optimal route whose optimal solution value is P and let the calculated

turnaround time for this solution be w weeks. The weekly profit per ship is then P/w. However, to

provide a regular service on the weekly basis, the company will have to employ a fleet of w ships,

so that the total weekly profit for the company is P .

3.2. Transformation of the Input Graph

To simplify the notation and the description of our models, we introduce the directed acyclic graph

(DAG) G = (N̄ ,A) which is constructed by doubling all the ports (except the last one), so that

the first (resp., second) copy corresponds to the (possible) visit of the port in the outbound (resp.

inbound) direction. The set of arcs A ensures that only outbound, resp. inbound container shipping

is allowed, but no containers can be carried in both directions. We have the following notation:

• The set of nodes N̄ = {1,2, . . . , n,n+ 1, n+ 2, . . . ,2n− 1} is an ordered set of 2n− 1 nodes

such that the nodes i ∈ {1, . . . , n} correspond to the outbound visit of port i, whereas nodes i ∈
{n+ 1, . . . ,2n−1} correspond to the inbound visits of ports ī= 2n− i. In the following we will use

a mapping ī= 2n− i to refer to the physical port ī associated to the node i ∈ N̄ , whenever i > n.

To each node i∈ N̄ , we associate:

— T̄i is the time necessary to visit port i. It is defined as:

T̄i :=

{
T ai +T di , if i≤ n,
T aī +T dī , otherwise

i∈ N̄

The definition of all other parameters (Fi, U
e
i , Lei , U

f
i , Lfi , T li , T

u
i , T̃ li , T̃

u
i ) is straightforwardly

extended from set N to N̄ , namely, for i≤ n, the values remain unchanged, and for i > n, they are

set to the respective value for port ī= 2n− i.
• Two nodes i and j from N̄ are connected by an arc a= (i, j)∈A iff i < j ≤ n or n≤ i < j. To

each arc (i, j)∈A, we associate the following parameters:

— D̄ij is the weekly expected demand between i and j, and it is set as:

D̄ij :=

{
Dij, if i < j ≤ n,
Dīj̄, if n≤ i < j

(i, j)∈A

— P̄ij is the net profit for shipping a container from port i to port j, i.e., it is obtained by

subtracting the container unloading and loading costs from the collected revenue:

P̄ij :=

{
Pij −U f

j −L
f
i , if i < j ≤ n,

Pīj̄ −U f

j̄
−Lf

ī
, if n≤ i < j

(i, j)∈A

— C̄ij is the cost per empty container shipped from i to j:

C̄ij :=

{
Lei +U e

j , if i < j ≤ n,
Leī +U e

j̄ , if n≤ i < j
(i, j)∈A
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— T̄ij, resp., T̄ eij, is the sum of the loading and unloading time per full, resp., empty, container

when shipped from i to j:

T̄ij :=

{
T li +T uj , if i < j ≤ n,
T lī +T uj̄ , if n≤ i < j

T̄ eij :=

{
T̃ li + T̃ uj , if i < j ≤ n,
T̃ lī + T̃ uj̄ , if n≤ i < j

(i, j)∈A

Observe that P̄ij shall remain strictly positive, otherwise the O-D pair (i, j) can be removed from

the set of demands (as the shipping company would normally not offer the service if these net

profits are non-positive).

A feasible solution in the graph G can now be described using a subset of arcs A′ ⊂A such that

each arc (i, j) is labeled using a tuple aij/bij, which means that aij full and bij empty containers

are shipped from port i to port j. By construction, only shipping in the outbound, respectively,

inbound direction is allowed. Nodes incident to A′ define the calling ports, and the route can be

automatically reconstructed by following the sequence of incident nodes in the outbound and then

inbound direction. In the following we provide two examples to illustrate the basic concepts of the

empty container repositioning.

Example: Let us assume that we are given n= 4 ports, such that the demands for transporting

full containers (after the transformation of the input graph, as described above) are: D̄12 = 2,

D̄13 = 5, D̄34 = 7, D̄46 = 4, D̄57 = 3, D̄67 = 7. Let us furthermore assume that the ship capacity is

C = 10, so that in a feasible solution all demands can be satisfied. Let T̄i = 1 for all i ∈ N̄ and

T̄ij = 0, T̄ eij = 0, for all (i, j) ∈ A. Let Tmin = 7 and Tmax = 8 (hence, a solution in which all four

ports are called in both directions is feasible). In the following, we illustrate two feasible solutions,

each of them corresponding to a route 1-2-3-4-3-2-1. However, in the first one (depicted in Figure

2), the balancing of containers is done by storing and leasing empty containers at respective ports,

whereas in the second example (Figure 3), storage and leasing costs are avoided by transporting

the empty containers along the route. Depending on the costs required for storage/leasing, one

solution can be better than the other.

We use Figure 2 to explain the balancing of empty containers: at each port i ∈N , flow-balance

constraints have to be satisfied. So, for example, at port 2, there are 2 full containers unloaded

in the outbound direction, there are 4 more unloaded in the inbound direction. There are zero

containers loaded in the outbound, and 7 containers loaded in the inbound direction. Hence, the

total difference between the unloaded and loaded containers in both directions is (7+0)− (2+4) =

1, and we conclude that one empty container has to be leased at port 2. Similarly, whenever this

difference is negative, the corresponding number of containers has to be stored at the given location.
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1 2 3 4 3̄ 2̄ 1̄

2/0

5/0

7/0

4/0 3/0

7/0

Figure 2 Example of a solution in which storage of empty containers is needed at port 1 (3 containers) and port

4 (3 containers), and leasing is necessary at port 2 (1 container) and port 3 (5 containers).

1 2 3 4 3̄ 2̄ 1̄

2/3

5/0

0/2 7/0 0/3

4/0 3/0

7/0

Figure 3 Example of a solution in which no leasing/storage of empty containers is needed, since the balancing

is guaranteed by the shipping of empty containers.

3.3. NP-hardness

The BCSP contains a constraint associated to the upper bound on the total turnaround time. This

is a knapsack-type constraint, so it follows that the BCSP is at least weakly NP-hard. We refer the

interested reader to Martello and Toth (1990), Kellerer, Pferschy, and Pisinger (2004) for further

details on the knapsack problem. In the following, we show two results: (1) we prove that the

problem is in fact strongly NP-hard, even if most of the constraints are relaxed and the knapsack

constraint is kept, and (2) in the case that the knapsack constraint and the ship-capacity constraint

are relaxed, the problem can be solved in polynomial time. We say that the input instance is

capacity-unconstrained if the ship capacity C is sufficiently large so that at every leg, complete

demand can be shipped, i.e., if
∑

(i,j)∈A:i≤i′,j>i′ D̄ij ≤C for each port i′ ∈ N̄ . Similarly, we say that

the instance is time-unconstrained, if the imposed interval [Tmin, Tmax] for the turnaround time is

such that Tmin = T0 and Tmax is sufficiently large so that all ports can be called in both directions

and all demands can be served.

The decision problem associated with BCSP consists of determining if there exists a solution

ensuring a given profit.

Theorem 1. The decision problem associated with BCSP is strongly NP-complete even if the

input instance is:

• capacity-unconstrained,

• all costs are equal to zero (i.e., C̄ij = 0, for all (i, j)∈A),

• all demands and profits are binary (i.e., D̄ij, P̄ij ∈ {0,1}, for all (i, j)∈A),

• T̄i = 1, for all i∈ N̄ , T0 = Tmin,
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• all leasing and storage costs are equal to zero (i.e., Li = Si = 0 for all i∈N) and

• all loading and unloading times are zero.

Proof. We will prove this result by reduction from the (decision variant of the) CLIQUE problem.

Let H = (V,E) be an undirected graph, V the set of nodes, E the set of edges and let k be an

integer. The decision variant of the CLIQUE problem consists of deciding if a subset of nodes

Q⊆ V of cardinality k exists such that the induced subgraph H[Q] is complete. We transform this

instance of the CLIQUE problem into an instance of the BCSP in the following way. Without loss of

generality we can order the nodes as follows: V = {2, . . . , n−1}. We built the DAGG= (N̄ ,A) where

N̄ = {1} ∪ V ∪ {n} ∪
⋃n−1

i=2 {̄i} ∪ {2n− 1} and A =
⋃n

i=2{(1, i), (n, ī)} ∪
⋃n−2

i=2

⋃n−1

j=i+1{(i, j), (̄i, j̄)} ∪⋃n−1

i=2 {(i, n), (̄i,2n− 1)}

Profits and demands are defined as follows:

P̄ij = D̄ij =

{
1, if edge ij ∈E ∨ īj̄ ∈E ∨ i∈ {1, n,2n− 1} ∨ j ∈ {1, n,2n− 1}
0, otherwise

(i, j)∈A,

We set T̄i = 1 for each port i ∈ N̄ and Tmin = T0 and Tmax = T0 + 2k + 3. Figure 4 illustrates the

transformation from the graph H into the DAG G, where dashed arcs correspond to the arcs where

the associated net profits and demands are equal to zero (P̄24 = D̄24 = P̄25 = D̄25 = P̄5̄2̄ = D̄5̄2̄ =

P̄4̄2̄ = D̄4̄2̄ = 0).

2 3

45 1 2 3 4 5 6 5̄ 4̄ 3̄ 2̄ 11

Figure 4 Transformation from CLIQUE problem into the BCSP on the DAG G.

Under the assumptions stated in the theorem, we observe that the optimal solution of the BCSP

has a value (k+ 2)(k+ 1) if and only if the selected ports in this solution correspond to a clique

of size k in G. Indeed, given the interval [Tmin, Tmax] for the turnaround time, at most 2k+ 3 ports

can be called (including the first and the last port), by any feasible BCSP solution. Observe that

a profit between ports i and j (in the inbound and outbound direction) can be collected only if

there exists an edge ij ∈E. Hence, the total profit collected by traversing from 1 to n is at most
(k+2)(k+1)

2
, and the same holds for the profit collected from n to 1. If the induced subgraph defined

by the visited ports is not complete, then the solution value is strictly less than (k+2)(k+1). This

also holds if less than k ports are visited between 1 and n. This completes the proof. �

Corollary 1. The BCSP is strongly NP-hard.

Theorem 2. The BCSP is polynomially solvable in the restricted case in which:
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• the instance is capacity-unconstrained,

• the instance is time-unconstrained, and

• leasing and storage costs for empty containers are equal to zero (i.e., Li = Si = 0, for all i∈N).

Proof. We will prove this result by modeling the problem using two sets of binary variables:

Let binary variables xi be set to one iff port i is called, i ∈ N̄ , and, for each (i, j) ∈A, let binary

variables zij be set to one iff the complete demand D̄ij is satisfied. Due to the zero costs for leasing

or storing empty containers, we easily observe that there always exists an optimal solution in which

no empty containers need to be shipped. In this case the problem can be modeled as follows:

max
∑

(i,j)∈A

P̄ijD̄ijzij −
∑
i∈N̄

Fixi (5)

zij ≤xi (i, j)∈A (6)

zij ≤xj (i, j)∈A (7)

xi, zij ∈{0,1} (i, j)∈A (8)

Validity of this formulation follows from the fact that, if port i is called, all its demand will be

covered (since there are no capacity restrictions and a solution in which the demand is partially

fulfilled can always be improved by increasing the served demand). We observe that the constraint

matrix defined by (6)-(7) is totally unimodular, hence, solving the LP-relaxation of this problem

already provides an integer solution, which concludes the proof. �

4. New MIP models for the BCSP

In this section we propose two new MIP formulations for the BCSP. Our models are much sparser

when compared to those known in the literature, both in terms of the required decision variables

and the underlying constraints. As we will demonstrate in the computational section, these models

also provide significantly tighter lower bounds when compared to the previous formulation given

in Maraš et al. (2013).

The basic property exploited by the new formulations is the fact that the sequence of ports that

could be called is known in advance, and hence the routing aspect of the underlying optimization

problem can be completely avoided. More precisely, once the calling ports are known, the underlying

route is automatically given. Hence, there is no need to use arc variables for describing the route,

it suffices to focus on the decisions whether a port i is called or not, and to distinguish between

the calls in the outbound and inbound direction. The following variables are common in our both

models:

• xi are binary variables which are set to one iff port i is called, i∈ N̄ ,

• zij is the number of full containers shipped from i to j, (i, j)∈A,
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• si is the number of empty containers stored at port i, i∈N ,

• li is the number of empty containers leased at port i, i∈N .

In the DAG G, for a given S ⊂ N̄ , let δ+(S) = {(i, j)∈A : i∈ S, j 6∈ S} denote the set of outgoing

arcs from S, and similarly δ−(S) = {(i, j)∈A : i 6∈ S, j ∈ S} the set of incoming arcs. In the special

case, for S = {i} we will write δ+(i) and δ−(i), respectively. In the following, for each node i′ ∈ N̄ ,

with Ai′ we denote the arc-cut between the predecessors of i′ (including i′) and all its successors:

Ai′ = {(i, j)∈A : i≤ i′, j > i′} (9)

By summing up the number of all containers shipped through Ai′ , we obtain the load of the ship

between ports i′ and i′+ 1. Obviously, for each 1≤ i′ < 2n− 1, we must ensure that the total load

does not exceed capacity C.

Finally, we also have to specify the repositioning of empty containers. The way on how to model

this repositioning comprises the major difference between the two MIP models considered in this

paper. The first model keeps track of the number of empty containers shipped between any two

ports, whereas for the second model we only keep track of the number of empty containers that

arrive, respectively, leave each port.

4.1. First Model with Arc-Variables for Empty Containers

In our first model, we use arc variables yij associated to each arc (i, j) ∈ A with the following

meaning:

• yij is the number of empty containers shipped from i to j, (i, j)∈A.

The following MIP model, that will be denoted by MS
1 , is a valid formulation for the BCSP

(notation S stands for splittable demand):

max
∑

(i,j)∈A

(P̄ijzij − C̄ijyij)−
∑
i∈N̄

Fixi−
∑
i∈N

(Sisi +Lili) (10)

zij ≤D̄ijxi (i, j)∈A (11)

zij ≤D̄ijxj (i, j)∈A (12)∑
(i,j)∈δ+(i)

(zij+yij)≤Cxi i∈ N̄ (13)

∑
(j,i)∈δ−(i)

(zji+yji)≤Cxi i∈ N̄ (14)

∑
(i,j)∈Ai′

(zij + yij)≤C i′ ∈ N̄ \ {1̄} (15)

∑
(i,j)∈δ+(i)

(zij + yij)−
∑

(j,i)∈δ−(i)

(zji + yji) +
∑

(̄i,j)∈δ+ (̄i)

(zīj + yīj)−
∑

(j,̄i)∈δ− (̄i)

(zjī + yjī) =li− si i∈N (16)
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Tmin ≤ T0 +
∑

(i,j)∈A

(T̄ijzij + T̄ eijyij) +
∑
i∈N̄

T̄ixi ≤Tmax (17)

si, li ≥0 i∈N (18)

xi ∈{0,1} i∈ N̄ (19)

zij, yij ∈Z+ (i, j)∈A (20)

In this model, the objective function given in (10) maximizes the difference between the net profit

(P̄ ) obtained for shipping the full containers, and the remaining cost that is composed of the cost

for loading and unloading empty containers, cost for entering the ports (note that they will be paid

twice if the same port is visited in the outbound and inbound direction), and cost for balancing

containers at each port. Constraints (11) and (12) guarantee that full containers can be shipped

from i to j only if both ports i and j are called. In addition, they impose the number of shipped

containers not to exceed the demand D̄ij. Constraints (13) and (14) state that the complete ship

load to be delivered at (or shipped from, respectively) port i cannot exceed ship capacity C, and

in addition, nothing can be transported to/from a port, if the port is not called. Inequalities (15)

are the capacity constraints associated to the maximal capacity of the ship C: they ensure that the

load of the ship (concerning both empty and full containers) between each node i′ and i′+ 1 does

not exceed C. Balancing of empty containers is given by constraints (16), where we again use the

notation ī= 2n− i. For a given port i∈N , we calculate the difference of all containers loaded at i

(either in the inbound or outbound direction) and containers unloaded at i (again, either inbound

or outbound). If this difference is positive, the shipping company has to lease as many containers

at port i, otherwise, it will need to store them. By minimization of Sisi + Lili in the objective

function, at optimality we necessarily have for each i : li ≥ 0 and si = 0, or si ≥ 0 and li = 0, but not

li > 0 and si > 0. Finally, we impose the length of the round trip to be in the interval [Tmin, Tmax]

with constraint (17). The nature of decision variables is defined by (18)-(20). We do not explicitly

impose integrality on li and si, since whenever variables x, z and y are integer, variables l and s

will automatically take integer values.

Notice that in the model MS
1 , due to the construction of the DAG G, all the cargo (including

empty containers) is unloaded at port n, and then a new cargo is loaded at the same port. Hence,

our model does not explicitly prevent a solution in which empty containers are carried from a port

say i < n all the way to the port n, and then back to the port j, if this results in a less expensive

solution. However, in the objective function, one would have to pay unloading and loading of these

containers at the port n, whereas in reality, they would remain on the ship. To model this (rather

extreme) situation, one would need to add a correction term to the objective function. Let y=
n be

an integer variable modeling the number of empty containers kept on the ship at port n. To the
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objective function one has to add the correction term (Len +U e
n)y=

n where the correct value of y=
n

is guaranteed by the constraints:∑
(j,n)∈δ−(n)

yjn ≥ y=
n and

∑
(n,j)∈δ+(n)

ynj ≥ y=
n

For the sake of simplicity and without loss of generality, we do not involve variable y=
n in the

rest of the paper.

4.2. Second (Aggregated) Model with Node Variables for Empty Containers

In contrast to the full containers, where each of them has a pre-specified origin and destination

(and hence, each D̄ij has to be considered as a separate commodity), empty containers can be seen

as a single commodity that can be picked up and/or delivered at any port. We therefore do not

need to explicitly state the exact amount of empty containers transported from port i to port j,

but rather the amount of empty containers that leave, respectively enter, each port. We modify

model MS
1 to derive a second model, denoted by MS

2 by replacing the yij variables with these two

new sets of variables:

• yini is the number of empty containers unloaded at port i, i∈ N̄ ,

• youti is the number of empty containers loaded at port i, i∈ N̄ .

Given these variables, we have to slightly modify the objective function so that the costs for

loading/unloading empty containers at each port are handled separately. The model MS
2 reads as

follows:

max
∑

(i,j)∈A

P̄ijzij −
∑
i∈N̄

(Fixi +Leiy
out
i +U e

i y
in
i )−

∑
i∈N

(Sisi +Lili) (21)

zij ≤D̄ijxi (i, j)∈A (22)

zij ≤D̄ijxj (i, j)∈A (23)∑
(i,j)∈δ+(i)

zij + youti ≤Cxi i∈ N̄ (24)

∑
(j,i)∈δ−(i)

zji + yini ≤Cxi i∈ N̄ (25)

∑
(i,j)∈Ai′

zij +
∑
i≤i′

(youti − yini )≤C i′ ∈ N̄ \ {1̄} (26)

∑
(i,j)∈δ+(i)

zij + youti −
∑

(j,i)∈δ−(i)

zji− yini +
∑

(̄i,j)∈δ+ (̄i)

zīj + youtī −
∑

(j,̄i)∈δ− (̄i)

zjī− yinī =li− si i∈N (27)

Tmin ≤ T0 +
∑

(i,j)∈A

T̄ijzij +
∑
i∈N̄

(T̄ixi + T̃ li y
out
i + T̃ ui y

in
i )≤Tmax (28)

si, li ≥0 i∈N (29)
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xi ∈{0,1} i∈ N̄ (30)

zij ∈Z+ (i, j)∈A (31)

yini , y
out
i ∈Z+ i∈ N̄ (32)

Constraints (22)-(28) are the adaptation of constraints (11)-(17), respectively. In order to balance

the empty containers, four additional constraints are needed. Constraints (33) enforce that the

amount of empty containers unloaded at a specific port cannot exceed the surplus of empty con-

tainers cumulated in the previous ports. The meaning of constraints (34) is similar, but it concerns

the empty containers loaded at port i.

∑
j<i

youtj −
∑
j<i

yinj ≥yini i∈ N̄ (33)∑
j>i

yinj −
∑
j>i

youtj ≥youti i∈ N̄ (34)

Finally, constraints (35), together with the structure of the DAG G, ensure that the whole cargo

that was carried outbound (including empty containers) is unloaded at port n. Correspondingly,

constraints (36), together with the structure of the DAG G, guarantee that the cargo is loaded at

port n (or later), to be carried inbound.

n−1∑
i=1

youti −
n−1∑
i=1

yini =yinn (35)

2n−1∑
i=n+1

yini −
2n−1∑
i=n+1

youti =youtn (36)

In contrast to model MS
1 , the validity of model MS

2 is less obvious, and this result will be shown

in the following subsection.

4.3. Equivalence of the Two Models

With the following theorem we prove two results: First, we show that the model MS
2 is a valid

formulation for the BCSP (by providing a bijection of solutions between the first and the second

model). Second, we also prove that the two formulations, MS
1 and MS

2 , have the same value of the

LP-relaxation (in which case, we call the two models equivalent).

Theorem 3. Every (fractional) solution (x̄, z̄, s̄, l̄, yij) of model MS
1 can be transformed into a

(fractional) solution (x̄, z̄, s̄, l̄, yin, yout) of model MS
2 with the same objective value, and vice-versa.

The linear transformation is given as:

yini =
∑

(j,i)∈δ−(i)

yji (37)
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youti =
∑

(i,j)∈δ+(i)

yij (38)

Proof. The transformation from solutions of MS
1 to MS

2 simply fixes the values of variables yin

and yout by equations (37) and (38). The transformation from solutions of MS
2 to MS

1 , that also

ensures (37) and (38), is trickier and will be explained at the end of the proof.

Observe that if (37) and (38) hold, we have equality of objective values for the two models, which

follows from the definition of C̄ij, since∑
(i,j)∈A

C̄ijyij =
∑
i∈N̄

∑
(i,j)∈δ+(i)

(Lei +U e
j )yij =

=
∑
i∈N̄

Lei
∑

(i,j)∈δ+(i)

yij +
∑
i∈N̄

U e
i

∑
(j,i)∈δ−(i)

yji =
∑
i∈N̄

(Leiy
out
i +U e

i y
in
i ),

whereas all the other terms remain equal in the objective functions of the two models.

Now, let us focus on constraints. Observe that if (37) and (38) are satisfied, then obviously

constraints (13), (14), (16) and (17) for MS
1 become constraints (24), (25), (27) and (28) for MS

2

and vice-versa. Moreover, the cut capacity constraints (15) become constraints (26) and vice versa

because ∑
i≤i′

(youti − yini ) =
∑
i≤i′

(
∑
j>i

yij −
∑
j<i

yji)

=
∑
i≤i′

(
∑

j:i<j≤i′
yij +

∑
j>i′

yij −
∑
j<i

yji)

=
∑
i≤i′

∑
j>i′

yij =
∑

(i,j)∈Ai′

yij

as in the second line above, the first and the third summation cancel out (as each arc (i, j)

with i < j < i′ appears with a positive and a negative sign), so that what finally remains is the

summation of the arcs with origin i≤ i′ and destination j > i′.

Now to finish the proof, we need to complete the missing parts studying one transformation after

the other.

(i) Transformation from solutions of MS
1 to MS

2 . It remains to show that constraints (33) and

(34) are satisfied. Indeed, by using (37) and (38), we get∑
i<i′

(youti − yini )− yini′ =
∑
i<i′

∑
j>i

yij −
∑
j≤i′

∑
i<j

yij =
∑
i<i′

∑
j>i′

yij ≥ 0

which follows from the fact that each arc (i, j) such that i < j ≤ i′ appears twice in the summation

on the left-hand side, once with a positive and once with a negative sign, so that what finally

remains is the sum of arcs that start before i′ and end after i′. Hence, (33) is satisfied. Similarly,
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the validity of (34) can be shown, as they practically boil down to the same
∑

i<i′
∑

j>i′ yij ≥ 0.

(ii) Transformation from solutions of MS
2 to MS

1 . It finally remains to show that from given yini

and youti , one can find values of variables yij such that (37) and (38) are satisfied, i.e., this system

of equations has a solution. First, observe the following property:∑
i∈Ñ

youti −
∑
i∈Ñ

yini =0 (39)

This holds as by summing (35) and (36) we get

0 =

(
n−1∑
i=1

youti −
n−1∑
i=1

yini − yinn

)
+

(
−

2n−1∑
i=n+1

yini +
2n−1∑
i=n+1

youti + youtn

)

=
2n−1∑
i=1

youti −
2n−1∑
i=1

yini

We show that the values of yij can be obtained by solving a circulation problem on an extended

digraph in which node demands/supplies are defined using the values of yin and yout. This extended

graph is constructed starting from the original digraph G, by adding for each node i∈ N̄ two nodes

i− and i+, and two arcs (i−, i) with a lower bound and capacity both equal to yini (to ensure a

flow of yini units on that arc) and (i, i+) with a lower bound and capacity both equal to youti for

the same reason. Then for each (i, j) ∈A, we add an arc (i+, j−) with capacity C − z̄ij. In Figure

4.3 we show an example of the extended digraph for an instance with 4 ports. Solving the system

of equations (37)-(38) is equivalent to finding a feasible circulation in this modified graph with

supply/demands di := yini −youti on nodes i∈ N̄ . A sufficient condition for finding a feasible flow on

such a graph is that
∑

i∈N̄ di = 0 (see Kleinberg and Tardos (2006), section 7.7) which is exactly

our property (39). So, we can indeed find the yij satisfying (37)-(38) from the yini , youti values. This

completes the proof. �

1 1+ 2− 2 2+ 3− 3 3+ 4− 4 4+ 3̄− 3̄ 3̄+ 2̄− 2̄ 2̄+ 1̄− 1̄yout1 yin2 yout2 yin3 yout3 yin4 yout4 yin
3̄

yout
3̄

yin
2̄

yout
2̄

yin
1̄

y12

y13

y14

y23

y24

y34 y43̄

y42̄

y41̄

y3̄2̄

y3̄1̄

y2̄1̄

Figure 5 Example of extended graph for an instance of 4 ports

Even though the two formulations provide the same quality of lower bounds, it is not clear which

one of them performs better from the computational point of view. This is because formulation MS
2
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admits less decision variables, but more constraints when compared to MS
1 . On the one hand, for-

mulation MS
2 strongly exploits the problem assumptions (outbound-inbound principle) and results

into a “thinner” model. On the other hand, model MS
1 could be more flexible in terms of potential

extensions concerning e.g., the time-dimension, simultaneous planning of multiple routes, or trans-

shipment. Computational comparison of the two models, among other issues, will be investigated

in Section 6.

4.4. Properties of Optimal Solutions

We now introduce some properties of optimal solutions whenever special assumptions concerning

cost, capacity or time limit parameters are satisfied.

Proposition 1. If for each port i, we have U e
i > Li, L

e
i > Si and T li + T ui < T̄ li + T̄ ui , then all

variables yi will be zero at optimality and therefore can be removed from the model.

Proof. Let us use model MS
2 for the proof. To balance containers at each port, constraints (27) can

be rewritten as ∑
(i,j)∈δ+(i)

zij +
∑

(̄i,j)∈δ+ (̄i)

zīj

−
 ∑

(j,i)∈δ−(i)

zji +
∑

(j,̄i)∈δ− (̄i)

zjī

= li− si + (yini + yinī )− (youti + youtī )

which says that the difference between outflow and inflow at port i (computing flows at a port

both outbound and inbound) should be exactly balanced by a mix of storing or leasing, and empty

container repositioning. The right-hand side of the above flow balance equation has a corresponding

cost of Sisi +Lili +Lei (y
out
i + youtī ) +U e

i (yini + yinī ) in the objective function (21). Therefore, if the

cost assumptions of the proposition hold, balancing the containers with only storing or leasing

(variables si or li) without using any empty containers (yin = yout = 0) will be less costly. Since the

empty containers variables yin and yout consume ship capacity in constraints (24), (25), (26) and

consume more time in constraint (28) if T li + T ui < T̄ li + T̄ ui , then these variables yin and yout will

all be equal to zero at optimality. �

Consequently, to have an economic interest in transporting empty containers, we can assume

that the conditions of Proposition 1 do not hold. We now introduce a second property of optimal

solutions based on capacity and time-limit assumptions.

Proposition 2. If (i) there is enough demand to fill the ship at any time (i.e.,
∑

(i′,j)∈Ai
D̄i′j ≥

C for each port i ∈ N̄), and (ii) the instance is time-unconstrained, then the ship will carry full

containers only and will be at full capacity C during the whole trip.

Proof. Assume that
∑

(i′,j)∈Ai
D̄i′j ≥C for each port i ∈ N̄ and let (x∗, z∗, s∗, l∗, y∗) be an optimal

solution such that there exists a port i ∈ N̄ such that
∑

(i′,j)∈Ai
z∗i′j <C. In this solution, the ship
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might carry some empty containers (i.e., we might have
∑

(i′,j)∈Ai
y∗i′j 6= 0) without exceeding the

overall capacity. Starting from this optimal solution, one can find a feasible solution (x∗, z′,0,0,0)

that visits exactly the same ports, satisfies z′ij ≥ z∗ij for all arcs (i, j) and
∑

(i′,j)∈Ai
z′i′j =C for each

i ∈ N̄ , by simply removing all empty containers and adding full containers up to systematically

filling the ship capacity. In this modified solution, since the ship is always at full capacity with only

full containers we have yini = youti = 0 for each i∈ N̄ . As the containers are already balanced by the

z′-variables, we also have li = si for all i∈N . Moreover, as all profits satisfy P̄ij > 0 and we added

full containers to those already transported, the new solution (x∗, z′,0,0,0) has a strictly higher

profit than the starting one, i.e.,
∑

(i,j) P̄ijz
′
ij >

∑
(i,j) P̄ijz

∗
ij, it has the same fixed costs associated to

visited ports, and has zero leasing, storage, or empty container repositioning costs. So the objective

value of (x∗, z′,0,0,0) is strictly better than that of (x∗, z∗, s∗, l∗, y∗), which contradicts the fact

that the optimal solution would not be at full capacity at each port. �

In practice, the total demand is often large enough to completely fill the ship at most of the

segments. Therefore, the reason why the ship would not be at full capacity C is mainly the upper

limit for the turnaround time (Tmax), which implicitly bounds the amount of full containers to be

shipped. Similarly, if the demand is not allowed to be split, there will more available capacity on

each segment. This residual capacity at the ship is normally filled by empty containers, whenever

this can bring savings with respect to leasing at storage costs. Both observations are verified in our

numerical experiments, as we will see later (cf. Section 6).

5. Problem Variants

In the previous sections, our main focus was on modeling the profit maximization for a barge

container shipping company, while taking into account estimated weekly demands and a given

interval for the turnaround time. In this section we demonstrate that our models do not have to

be limited to these special cases. We show the following:

• Instead of imposing the lower and upper bound limits for the turnaround time, our models

can easily be adapted to find the optimal turnaround time, while at the same time maximizing the

achieved (weekly) profit. Below we propose an adaptation of our models that applies for the case

that the minimal turnaround time T0 is greater than a week.

• If the total route-length allows to schedule a container ship to perform multiple outbound-

inbound routes within a week, then a natural question arises: how to increase the utilization of

the ship so as to maximize the profit? The problem consists of finding an itinerary that can be

scheduled multiple times within a week, so that the demands are partially collected within each

roundtrip. This case has been addressed in Rana and Vickson (1988) and below we demonstrate

that with our models one can easily model this situation.
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• Sometimes, it is not allowed to split demands, so that either 0 containers or all D̄ij containers

have to be shipped, assuming ports i and j are called (i, j,∈ N̄). We show that our models can

easily be modified to deal with this “unsplittable demand-case”.

• Finally, we show that our models are not limited to the barge-container shipping network

design, but that they can be easily extended to the general maritime case in which the pre-ordering

of ports is given, but the length of the whole route is not fixed.

To simplify the exposition, we explain necessary extensions starting from the model MS
1 , but similar

modifications carry over to MS
2 .

5.1. Finding the Optimal Turnaround Time

Let us assume for a moment that the minimal turnaround time T0 requires at least one week to

close the route. The lower and upper bound on the turnaround time (Tmin and Tmax, respectively)

are often set by the decision maker based on some additional economical, operational or strategic

constraints. It is not difficult to see that solutions in which a lower or an upper bound is imposed

to the turnaround time may be suboptimal, and consequently, the shipping company may miss the

opportunity to increase the profits and better utilize its fleet. Consider, for example, a solution

that requires 3 weeks to close the route (with Tmax set to 3 weeks), so that the shipping company

charters three ships in order to provide a regular service on a weekly bases. It may happen that

by increasing Tmax, more time can be given to allow for a better utilization of the ship, so that

more containers can be shipped along the route. On the one hand, a route longer than 3 weeks

implies that the company will charter additional ships to make sure the weekly service is provided.

On the other hand, this may result in an increased profit per ship. Since the charter costs are

already subtracted from the profit function (cf. constant K0), this implies that the overall annual

gain of the shipping company increases. Similar arguments apply if the constraint that imposes

the minimum turnaround time is relaxed. It is therefore worthwhile asking the question: can we

simultaneously optimize the profit and determine the optimal turnaround time?

In what follows, we give a positive answer to this question and show how to adapt our previous

model MS
1 so as to simultaneously determine the calling sequence, the shipping of full and empty

containers and the optimal turnaround time. As customary, let us assume the demand is given on

a weekly basis. We introduce two additional decision variables:

• λ: an integer variable determining the optimal number of weeks for the turnaround time.

Given that T0 is the minimal turnaround time (in days) needed to sail from 1 to n and back, we

can calculate the lower bound on λ as λmin = dT0
7
e. Let λmax be a constant (given by the decision

maker) determining the maximal acceptable number of weeks for the turnaround time.

• β: the number of days the ship has to wait at the initial port, before starting the next route.

Clearly, we can impose an upper bound on β to be βmax ≤ 6 (but, normally, in practice, βmax ≤ 2).
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If a ship has to wait at the initial port, this may be costly for the shipping company. Let daily cost

for staying at the port be Cβ. The company wants to find the optimal turnaround time by taking

these costs into account as well. Minimal changes to the model MS
1 are required. Daily charter costs

now depend on the number of weeks the ship will be chartered, and we therefore replace dcc ·Tmax

from the constant K0 by dcc · 7λ in the objective function. The remaining (bunker) costs remain

constant (we assume that the average ship speed will not be changed), and they are expressed by

the constant K ′0 below. In addition, we add the penalty term to the objective function (βCβ), for

the number of days the ship will have to wait at the initial port. Hence, the objective function (10)

is replaced by:

max
∑

(i,j)∈A

(P̄ijzij − C̄ijyij)−
∑
i∈N̄

Fixi−
∑
i∈N

(Sisi +Lili)−βCβ − dcc · 7λ−K ′0

where

K ′0 = Pout · (
l

v1
+

l

v2
) · (fp · scf+ lp · scl). (40)

The profit function calculated above provides the weekly profit for the shipping company, assuming

that a fleet of λ identical ships will be scheduled to ensure the weekly service.

Similarly, the time constraint (17) has to be replaced by the following ones (including the bounds

on new variables):

7λ−β ≤ T0 +
∑

(i,j)∈A

(T̄ijzij + T̄ eijyij) +
∑
i∈N̄

T̄ixi ≤ 7λ

λmin ≤ λ≤ λmax

λ∈Z+

β ∈ {1,2, . . . , βmax}

With these constraints we ensure that the turnaround time will be between λ weeks minus β days

and λ weeks.

In our computational study (cf. Section 6) we study benefits of this model and demonstrate the

gains in profit achieved when the turnaround time is optimized along with the route.

5.2. Multiple Round-trips

In the following, we study the complementary situation in which the container ship requires less

than a week to close its route, so that it is theoretically possible to schedule multiple round trips

using the same ship within a week, and the same route. In that case, our model requires similar

adaptations as those proposed by Rana and Vickson (1988). We start with the model MS
1 and

introduce an additional variable:
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• α: the number of round trips made by the ship within a week. If at least one day is needed to

sail from port 1 to port n, then α∈ {1,2,3}.

Since α represents the number of round-trips the objective function must include the term α×K ′0
where K ′0 is defined as in (40), so the objective function reads as follows:

max
∑

(i,j)∈A

(P̄ijzij − C̄ijyij)−
∑
i∈N̄

Fixi−
∑
i∈N

(Sisi +Lili)−αK ′0− dcc ·Tmax

The inequalities (11), (12) and (17) have to be replaced by the following ones:

zij ≤
⌊
D̄ij

α

⌋
xi (i, j)∈A (41)

zij ≤
⌊
D̄ij

α

⌋
xj (i, j)∈A (42)

T0 +
∑

(i,j)∈A

(T̄ijzij + T̄ eijyij) +
∑
i∈N̄

T̄ixi ≤
Tmax

α
(43)

α∈ {1,2,3} (44)

Constraints (41) and (42) ensure that if α roundtrips are made, the full containers can be shipped

multiple times between i and j, but the total number of them cannot exceed the demand D̄ij.

Similarly, the time-constraint (43) guarantees that the length of α round-trips does not exceed

Tmax (which we assumed is a week). The inequalities (41),(42) and (43) are quadratic. As it is done

in Rana and Vickson (1988), the simplest way to deal with these non-linearities is to run the model

(at most) three times for different values of α, and take the best result.

5.3. Modeling Unsplittable Demand

If it is not allowed to split the demand D̄ij between any two ports i and j, (i, j) ∈ A, then our

model MS
1 requires a slight modification, which consists of replacing zij by D̄ijwij, where the binary

variable wij is set to one iff the complete demand D̄ij is shipped from i to j, i.e.:

wij =

{
1 if demand from port i to port j is completely fulfilled
0 otherwise

(i, j)∈A

In order to get a correct model for the unsplittable demands case, it is sufficient to replace every

appearance of the variable zij in the model MS
1 by D̄ijwij, for all (i, j)∈A.

Proposition 3. The value of the LP-relaxation of the model MU
1 (MU

2 ) is the same as the one

obtained by the model MS
1 (MS

2 ).

This result follows because every fractional feasible solution (x̄, z̄, s̄, l̄, ȳ) for model MS
1 can be

transformed into a fractional feasible solution (x̄, w̄, s̄, l̄, ȳ) for model MU
1 with the same objective

function value, and vice-versa using the linear transformation w̄ij =
z̄ij
D̄ij

for all (i, j)∈A.
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Observe that all feasible integer solutions of MU
1 can be transformed to feasible integer solutions

of MS
1 using this linear transformation, but trivially not vice-versa. Accordingly, the gap between

the optimal integer solutions value of model MU
1 and its LP-relaxation value cannot be smaller

than the LP-gap of model MS
1 . In our computational study (cf. Section 6), we computationally

show that these gaps are considerably higher and accordingly, model MU
1 is harder to solve.

It is well known that unsplittable demands give less flexibility to the shipping companies, and

hence lower ship utilization is normally achieved. This can be (partially) compensated by allowing

the repositioning of empty containers as they can be used to fill the residual capacity of the ship,

thereby saving the storage/leasing costs at the ports.

5.4. Designing Maritime Routes with Pre-specified Ordering of Ports

Let TTij be the Travel Time to sail from port i to port j (assuming the constant average speed,

these values can be calculated in a preprocessing phase). In the MIP formulations of Section 4,

we assumed that TTij = TTik+TTkj for ports i < k < j, (i, j) ∈A, as it is the case for shipping

along a river where the route necessarily passes by all ports. However, in the general case, see e.g.

Rana and Vickson (1988), Shintani et al. (2007), skipping an intermediate port k between i and

j could strictly shorten the distance by an amount that is not negligible when it comes to the

total bunker cots. We refer to this general case where TTij <TTik+TTkj for some triples ((i, k, j),

i < k < j, (i, j) ∈A) as shortcuts. This can happen even in the restricted case of a pre-ordering of

the sequence of ports that is studied all along this paper. In the following, we show how to adapt

our models to deal with this general case even without introducing binary arc-variables to describe

the route. The major difference to the BCSP is in the computation of K0 and T0 which are not

constants anymore.

For each pair of ports (i, j)∈A, we introduce new continuous variables:

• tij is equal to the travel time between ports i and j (for the chosen route), if ports i and j are

two subsequently called ports on the route. Otherwise, tij is zero.

The following inequalities ensure the exact value of tij

tij ≥TTij(xi +xj − 1−xk) (i, j)∈A, i < k < j (45)

tij ≤TTijxi (i, j)∈A (46)

tij ≤TTijxj (i, j)∈A (47)

tij ≤TTij(1−xk) (i, j)∈A, i < k < j (48)

tij ≥0 (i, j)∈A (49)



Alfandari et al.: New Models for Liner Shipping with Empty Container Repositioning
27

where TTij is the travel time between ports i and j. Observe that the inequalities (46),(47) and

(48) are redundant if the lower bound on the turnaround time (Tmin) is not imposed.

These new continuous variables are now used to modify the objective function (10) and the

time-constraint (17). We namely update the values of K0 and T0 as follows:

K0 = dcc ·Tmax + Pout · (
∑

(i,j)∈A

tij) · (fp · scf+ lp · scl)

T0 = 2tl + 2tb +
∑

(i,j)∈A

tij

Hence, the charter cost remain unchanged, whereas bunker cost are now calculated in function of

the total distance traveled. Both, objective function and the turnaround constraints remain linear.

6. Computational Experiments

The goals of our computational study are as follows: (1) Evaluate the performance of the two

formulations introduced in this paper and compare them with the state-of-the-art model from

Maraš et al. (2013); (2) Study the effects of rebalancing of empty containers on the achieved profits

and the solution structure; (3) Measure how the empty container rebalancing is influenced by

imposing splittable vs unsplittable demands (4) Test our models to determine optimal turnaround

times, rather than imposing their lower and upper limits as hard constraints.

All the algorithms are coded in C/C++, and run single-thread on a PC with an Intel(R)

Core(TM) i7-4770 CPU at 3.40GHz and 16 GB RAM memory, under Linux Ubuntu 14.04 64-bit.

We used IBM-ILOG Cplex 12.6.0 (Cplex in the following) as a general-purpose MILP solver. All

CPLEX parameters were set to their default values, except the following ones: relative and absolute

tolerance were set to 0.0.

6.1. Benchmark Instances

We use the benchmark instances for the BCSP introduced in Maraš et al. (2013): they consist

of n ports, with n ∈ {10,15,20,25}. In total, 20 instances are considered: for each value of n,

five instances were produced with different ship characteristics (carrying capacities, daily charter

costs, downstream and upstream speeds, engine outputs, fuel and lubricant consumptions, cf. Table

2). The real-world input parameters are taken from the Container Liner Service Danube project

COLD (2006), where ports along the river Danube are taken as input. Other parameters are taken

from Konings (2006), Konings and Priemus (2008), Notteboom (2007), Radmilović, Dragović, and

Maraš (2005) and Port of Antwerp and Rotterdam Port Information. Benchmark instances are

publicly available at Davidovic (2016).



Alfandari et al.: New Models for Liner Shipping with Empty Container Repositioning
28

Table 2 The characteristics of 5 different container barge ships.

Container barge ships No. units TEU Pout Total v1 v2 dcc

[kW] TEU [km/h] [km/h] [$]

Ship 1 Motorized cargo push vessel 1 90 2×607 215 19 11 3050

Pushed barges 1 165 –

Ship 2 Motorized cargo push vessel 1 145 2×1024 409 20 12 4450

Pushed barges 2 132 –

Ship 3 Motorized cargo push vessel 1 77 2×565 242 19 11 2850

Pushed barges 1 165 –

Ship 4 Motorized cargo push vessel 1 60 667 180 16 9 1750

Pushed barges 2 60 –

Ship 5 Motorized cargo push vessel 1 98 2×927 338 20 12 3850

Pushed barges 4 60 –

6.2. Computational Performance

Splittable Demands. In the following, we consider the BCSP problem with splittable demands

and compare the following three settings:

• MS
1 : the first MIP formulation introduced in Section 4.1, based on arc-variables yij for modeling

empty-container repositioning,

• MS
2 : the second MIP formulation introduced in Section 4.2, based on node-variables yini and

youti for modeling empty-container repositioning, and

• MLDM: the MIP formulation studied in Maraš et al. (2013).

All three models have been tested on the same machine whose features are described above. For

the results of MLDM, we set a time limit of two hours.

Table 3 compares the three models in terms of the number of decision variables and constraints.

Observe that it is sufficient to report a single line per each n ∈ {10,15,20,25}, since the size of

the models remains the same, once the number of ports is fixed. We notice that the MLDM model

exhibits roughly twice as many variables as our new models and more than 50% more constraints.

Comparing the size of the node-based model MS
2 with the arc-based one, MS

1 , we observe that the

latter one contains about 50% more variables, whereas the number of constraints of the former one

is slightly larger, but remains at the same scale as for MS
1 .

In Table 4 we compare the three models in terms of the following values: overall computing time

in seconds (time), total number of branch-and-bound nodes (# nodes), LP-relaxation gap (lp gap)

and final gap after reaching the time limit or proving optimality (exit gap). The LP-gap is defined

as:

lp gap =
LP −LB
LB−K0

· 100%,
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Table 3 Number of variables and constraints of the different models for the splittable demands case.

MLDM Model MS
1 Model MS

2

instance # vars # cons # vars # cons # vars # cons

Port10 358 398 219 246 167 286

Port15 758 818 479 521 327 581

Port20 1308 1388 839 896 537 976

Port25 2008 2108 1299 1371 797 1471

where LP is the value of the LP-relaxation of the corresponding model, and LB is the best-known

lower bound (or optimal solution). ”Exit gap” is calculated as

exit gap =
UB−LB
LB−K0

· 100%,

where UB is the global upper bound obtained upon the termination of the algorithm. Note that we

report the gaps after removing the constant K0 from the objective function. Since in their original

model, MLDM included K0 in the objective function, we also report its value in Table 4 for easier

comparison with the results published in Maraš et al. (2013). Column ”lp gap” is reported only

once for MS
1 and MS

2 (recall that the two models have the same quality of lower bounds). Column

OPT reports the optimal solution values.

The obtained results indicate that our new models are clearly superior to the MLDM formulation:

with our models all benchmark instances are solved within seconds to optimality (in most of the

cases within a fraction of a second), whereas for MLDM half of the instances could not be solved to

optimality within two hours (with exit gaps ranging between 11% and 40%). This can be explained

by two facts: (1) the size of the underlying formulations (cf. Table 3) and (2) by the quality of the

LP-relaxations. Indeed, the LP-gap of the MLDM is as big as 180%, whereas our models exhibit an

LP-gap which is consistently below 1% (with the exception of a single instance, for which the LP-

gap is 1.9%). Consequently, relatively few branch-and-bound nodes are needed to prove optimality

(hundreds, on average), whereas MLDM enumerates 3 to 4 orders of magnitude larger number of

nodes to prove optimality (for n ∈ {10,15}) and for n ∈ {20,25} it reaches the time limit after

exploring hundreds of thousands of nodes.

Comparing the performance of MS
1 and MS

2 , no clear picture emerges: we may conclude that the

models are competitive, both in terms of computing time and number of enumerated branch-and-

bound nodes.

Finally, it is worth mentioning that even after running the MLDM model with a time limit of

one day, most of the instances with n∈ {20,25} remained unsolved.
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Table 4 Computational performance of the three models for splittable demands.

MLDM Model MS
1 Model MS

2

instance OPT K0 time [s] # nodes lp gap [%] exit gap time [s] # nodes time [s] nodes lp gap [%]

Port10 1 110266.59 87927.58 2.43 3699 26.03 0.00 0.03 30 0.03 30 0.20

Port10 2 155604.92 130866.69 0.15 249 1.83 0.00 0.11 464 0.09 334 0.81

Port10 3 105370.17 82075.42 4.88 5821 31.88 0.00 0.04 84 0.04 63 0.14

Port10 4 73303.46 52617.19 0.42 591 8.76 0.00 0.13 297 0.09 108 1.90

Port10 5 140037.32 114722.33 0.84 1589 13.15 0.00 0.07 184 0.09 174 0.81

Port15 1 121546.54 109277.58 222.01 96914 146.79 0.00 0.03 0 0.03 0 0.02

Port15 2 187358.50 162016.69 85.31 54249 69.08 0.00 0.12 238 0.15 351 0.05

Port15 3 115823.64 102025.42 228.95 162075 158.94 0.00 0.06 0 0.06 13 0.03

Port15 4 87239.77 64867.19 897.73 523976 180.98 0.00 0.19 432 0.18 392 0.32

Port15 5 157472.29 141672.33 82.42 32528 101.04 0.00 0.08 12 0.05 10 0.01

Port20 1 129169.78 109277.58 TL 842898 136.64 22.95 0.30 90 0.26 177 0.26

Port20 2 195221.26 162016.69 TL 866050 66.81 11.60 0.31 137 0.20 99 0.08

Port20 3 123068.05 102025.42 TL 905052 148.36 23.97 0.86 530 0.71 562 0.45

Port20 4 92829.51 64867.19 TL 1064498 165.02 29.27 0.29 145 0.26 126 0.24

Port20 5 165930.22 141672.33 TL 805063 96.21 16.94 1.06 1919 1.10 2041 0.18

Port25 1 131101.13 109257.91 TL 403415 134.33 37.46 1.28 281 1.02 370 0.45

Port25 2 196427.43 162016.69 TL 363195 66.88 23.07 1.08 332 0.57 138 0.25

Port25 3 125469.35 102025.42 TL 401944 144.84 39.80 6.11 5777 5.57 5342 0.45

Port25 4 94044.71 64867.19 TL 453145 161.98 40.89 1.19 298 0.80 181 0.61

Port25 5 167862.13 141672.33 TL 416339 95.25 28.44 5.19 4272 4.50 4157 0.30

Unsplittable Demands. To have a closer look at the performance of the arc-based versus node-

based model for the empty container repositioning, we also compare models MU
1 and MU

2 . Recall

that the major difference with respect to MS
1 and MS

2 is that integer variables zij (denoting the

number of full containers shipped from i to j in the splittable demand case) are replaced by D̄ijwij

where binary variables wij are set to one iff complete demand D̄ij is shipped.

Table 5 compares the computational performance of MU
1 and MU

2 . The time limit for both

models MS
1 and MS

2 was set to one hour. The following values are provided: global lower and upper

bound upon the termination of the algorithm (LB and UB, respectively), and, as above, the total

computing time in seconds, the number of branch-and-bound nodes, exit gap and the LP-relaxation

gap (recall that also in this case, the quality of lower bounds of the two models is the same).

We first observe that imposing unsplittable demands appears computationally much more chal-

lenging, as only five out of 20 instances could be solved to optimality within the given time limit.

This can be (partially) explained by the quality of LP-gaps: compared to the splittable-demand

case, the LP-gaps for the unsplittable demands are much worse – they range between 1% and

6.4%. Hence, only for the smallest instances Cplex manages to close the gap within the time-limit,

whereas for the remaining ones, even after exploring more than 1M of branch-and-bound nodes,

the exit gaps remain around 0.1% - 0.5%. More importantly, the obtained results indicate that

the sparser model, namely MU
2 consistently outperforms MU

1 : the best upper bounds are obtained
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Table 5 Computational performance of models MU
1 and MU

2 for unsplittable demands.

Model MU
1 Model MU

2

instance LB UB time # nodes exit gap LB UB time # nodes exit gap lp gap

Port10 1 18204.52 18204.52 2.34 2728 0.00 18204.52 18204.52 3.11 5067 0.00 4.10

Port10 2 21872.31 21872.31 0.42 1029 0.00 21872.31 21872.31 0.44 1557 0.00 2.71

Port10 3 19783.36 19783.36 2.15 2695 0.00 19783.36 19783.36 2.74 4099 0.00 3.59

Port10 4 17608.09 17608.09 0.18 189 0.00 17608.09 17608.09 0.15 213 0.00 6.37

Port10 5 23297.05 23297.05 0.85 1897 0.00 23297.05 23297.05 1.52 2667 0.00 2.28

Port15 1 9474.87 10291.53 TL 2247575 0.36 9471.80 10166.69 TL 6498917 0.30 2.37

Port15 2 22706.26 23054.53 TL 2603056 0.10 22706.26 22849.24 TL 5083504 0.04 1.48

Port15 3 11574.65 11791.13 TL 1243732 0.10 11574.65 11741.77 TL 4402257 0.08 1.99

Port15 4 19654.72 20544.58 TL 1103277 0.59 19913.30 20287.72 TL 4778290 0.25 3.23

Port15 5 13561.16 13945.35 TL 2059334 0.13 13561.16 13767.15 TL 6360404 0.07 1.45

Port20 1 17270.88 18001.00 TL 1076608 0.31 17160.03 17959.15 TL 2894820 0.34 2.34

Port20 2 29834.88 30975.79 TL 1344006 0.32 30024.67 30959.53 TL 2432769 0.26 1.74

Port20 3 18438.86 19674.42 TL 1477260 0.55 18653.97 19575.81 TL 3312351 0.41 2.44

Port20 4 24871.18 25972.45 TL 849980 0.71 25022.21 25886.90 TL 2891723 0.56 3.52

Port20 5 21387.05 22578.94 TL 1164365 0.39 21229.96 22470.58 TL 2774473 0.41 1.95

Port25 1 19317.20 20550.42 TL 990330 0.52 19526.63 20349.93 TL 1831172 0.34 2.25

Port25 2 32297.59 33059.46 TL 891725 0.21 32334.48 33015.59 TL 1909594 0.19 1.32

Port25 3 20726.61 22284.03 TL 1050004 0.69 20878.69 22063.79 TL 1977061 0.52 2.55

Port25 4 25834.35 27248.33 TL 785775 0.90 25763.13 27257.47 TL 1745961 0.95 4.32

Port25 5 23575.91 25009.42 TL 881915 0.46 24015.08 24861.49 TL 1495270 0.27 1.61

with the MU
2 model, and consequently, the best exit gaps are reported with MU

2 in all but three

cases. We therefore conclude that it indeed pays off to eliminate arc variables and model the empty

container repositioning as a single commodity using node-variables only.

6.3. Analyzing Solutions: Splittable vs Unsplittable Demands

In the following, we analyze the structure of optimal solutions for both splittable and unsplittable

demand cases. Splittable demand case allows a shipping company to adjust the number of containers

accepted for loading and transportation in each port so as to achieve the highest value of profit.

Unsplittable demand case is more oriented towards satisfaction of all customer requests in calling

ports. Both profit and customer satisfaction are among the most significant business goals of any

barge shipping company so these cases have its practical values and usefulness.

Tables 6 and 7 report the major solution features for the unsplittable and splittable-demand

case, respectively. We report the number of ports in the calling sequence (outbound plus inbound)

(#calls), the percentage of total demand fulfilled (%D1) and the percentage of the total demand

of the visited ports (%D2). The average load (Avg. Load [%]) is calculated as the sum of the loads

between every two consecutive ports, divided by the total number of ports. The number of ships

required to fulfill the schedule is given in column “fleet” and corresponds to the turn-around time

in weeks. Column “revenue” reports the total revenue
∑

(i,j)∈APijzij, whereas column P̄ z̄ reports
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the net revenue after subtracting loading and unloading costs (
∑

(i,j)∈A P̄ijzij). Fixed costs for the

calling ports sequence are shown in F̄ x̄. Costs for storing, leasing and loading and unloading empty

containers are given in columns Ss̄, Ll̄ and C̄ȳ, respectively.

By comparing the values of profits from Tables 6 and 7, we can see that the profit, in the

case of splittable demands, is higher from 8% to 22 % compared to the unsplittable demand

case. Therefore, it can be concluded that a barge shipping company should pay more attention

to balancing the container flows and accepting the requests to the level that will enable higher

profits, than to the needs to satisfy all requests from all customers in calling ports. Tendency to

meet all the requirements not only decreases the profit but also becomes unrealistic in the view of

constant growth on the market and a given capacity of the ship. This market situation was taken

into account in our benchmark instances characterized with large transport demands.

In terms of the number of calling ports, percentage of all transport demand covered, percentage

of transport demand covered at visited ports and utilization of ships carrying capacity, there are

no significant differences in the results obtained for splittable and unsplittable demand cases.

Particularly, the number of calling ports and calling sequences are the same or shows very small

differences (at most one calling port is added or removed). Differences between these two cases in

the percentage of covered total transport demand are mostly not greater than 2 % (just in one case

it is more than 5 %). The results also show similar characteristics with regards to the percentage

of transport demand covered at visited ports. These differences are also in the range (1-2 %) and

just in one case the results differ 9 %. Transport demand covered at visited ports is around 60 %

in average. Since transport demands in all instances are set at high level, the average utilization of

carrying capacity is around 95 % for both splittable and unsplittable demand cases which can be

considered as very satisfying from the shipping company point of view.

Having all these results in mind, we can see that there are no significant differences in calling

sequences, transport demands covered and utilizations of carrying capacity for both cases. However,

differences in achieved profits are significant (up to 22 %). The main reasons for this outcome

are distinctions in freight rates and costs associated to each request for transport of containers.

Therefore, these findings go in line with our claim that a barge shipping company should pay

more attention to the characteristics of transport requests (such as number of containers to be

transported, freight rate, transport and handling costs, empty container repositioning costs, etc.),

rather than striving to satisfy all customer requests.

It is also obvious that empty container repositioning, storage and leasing costs are notably at low

level, particularly if we take into account the total costs in one round trip. It was assumed that the

shipping company does not charge a freight rate for transportation of empty containers. Therefore,

the suggested models are trying to balance the number of containers transported to and from every
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port of call, which in turn leads to the reduction in demands for repositioning, storage and leasing

of empty containers. Introducing the freight rates for transportation of empty containers, which is

a more realistic case in barge transport, would increase both revenues and costs related to usage

of empty containers. Therefore, in order to increase the flow of empty containers the proper values

for these freight rates should be determined.

Obtained results for both demand cases (splittable and unsplittable) justify the importance of

economies of scales in the shipping sector. It becomes obvious if we compare the TEU capacity of

analyzed barge container ships, container demands and achieved profits for each instance. Ships

with higher carrying capacity proved to be more profitable due to lower unit costs per TEU. These

reduced costs come out since operating, voyage and capital costs do not increase proportionally

with increase of TEU capacity of ships (Stopford (2009), Maraš et al. (2013)). However, it is

also necessary that customer demands and container flows among ports and terminals are large

enough to ensure high utilization of carrying capacity of ships. This is the case with our benchmark

instances. Results for instances with 10 ports, characterized with smaller total demands, are in

line with this claim since highest profit is not achieved for the ship with largest TEU capacity. In

instances with 15, 20 and 25 ports, barge container ship 2, with highest carrying capacity, reached

the highest values of objective function.

As can be seen from the Tables 6 and 7, the results are obtained for the fleet size of 3 (instances

with 10 ports) and 4 (instances with 15, 20 and 25 ports) ships. Since we consider weekly service,

total turnaround time is limited to 21 (fleet size of 3) and 28 days (fleet size of 4). On the other

hand, if we analyze the profits in both splittable and unsplittable demand cases, we can see that

these values for instances with 10 ports, with smaller level of demands, are often higher compared

to the profits for instances with 15, 20 and 25 ports. This can be explained by the importance

of capital costs in the total shipping costs. It is known from the literature Konings (2009) that

capital costs compose the largest portion of the total costs, and the obtained results clearly prove

that. Furthermore, importance of capital costs is also confirmed by values of profit for the barge

container ship 4. This ship has the smallest values of daily time charter costs, however, in instances

with 15, 20 and 25 ports, for both demand cases, reaches the second best position.

Finally, we summarize the increase of profits that can be achieved by allowing splittable demands

and/or empty container repositioning. In Chart 6 we start with the basic setting in which the

demand cannot be split and no empty container repositioning is allowed (zero line). We then

demonstrate: (1) the relative increase of profit (in %) if empty container repositioning is allowed

(curve denoted by “+e”), and (2) the relative increase of profit (in %) if both, empty container

repositioning and splittable demands are possible (curve denoted by “+es”). Instances in this chart

are sorted according to the increase with respect to “+e”. We observe that, only by shipping empty
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Figure 6 Relative improvement of profit, compared to the setting in which loads cannot be split and no empty

container repositioning is allowed (zero line).

Table 6 Solution features for the unsplittable demand case.

instance # calls % d1 % d2 Avg. Load [%] fleet profit revenue P̄ z̄ F x̄ Ss̄ Ll̄ C̄ȳ

Port10 1 13 40.92 75.40 90.6 3 18204.5 174032.0 113615.4 6772.0 0.0 0.0 711.3

Port10 2 15 49.20 72.88 80.2 3 21872.3 233562.0 161686.7 7906.0 391.0 457.6 193.1

Port10 3 13 40.77 75.74 95.2 3 19783.4 170125.0 109798.9 6732.0 176.0 194.9 837.3

Port10 4 8 21.64 82.08 87.3 3 17608.1 105774.0 75057.8 4110.0 206.6 130.0 385.9

Port10 5 14 50.51 81.62 89.1 3 23297.0 220107.0 145922.2 7286.0 115.7 148.3 352.9

Port15 1 27 40.78 46.24 95.9 4 9474.9 244266.0 133179.6 14104.0 0.0 0.0 323.2

Port15 2 28 53.01 56.29 94.5 4 22706.3 342562.0 200039.9 14656.0 67.5 70.6 522.9

Port15 3 27 41.48 47.03 95.2 4 11574.6 241215.0 128108.4 14104.0 0.0 0.0 404.3

Port15 4 23 30.45 45.74 97.8 4 19913.3 180726.0 97675.2 12043.0 155.7 228.2 467.8

Port15 5 28 48.97 52.00 96.0 4 13561.2 302618.0 170273.8 14656.0 35.3 35.3 313.7

Port20 1 28 28.37 52.37 96.3 4 17270.9 262488.0 141621.6 14681.0 164.1 175.0 53.1

Port20 2 28 33.91 59.65 94.4 4 30024.7 349461.0 207642.2 14872.0 0.0 0.0 728.8

Port20 3 28 28.37 50.74 96.4 4 18654.0 256486.0 136143.6 14792.0 0.0 0.0 672.2

Port20 4 24 20.93 49.07 96.1 4 25022.2 191879.0 102988.2 12381.0 99.7 141.1 477.0

Port20 5 29 32.17 53.98 95.6 4 21387.0 313981.0 178932.1 15253.0 76.4 66.6 476.6

Port25 1 27 21.22 56.54 97.3 4 19526.6 269328.0 143638.9 14370.0 0.0 0.0 484.4

Port25 2 28 24.20 63.22 96.6 4 32334.5 351103.0 209611.5 14910.0 43.7 56.3 250.4

Port25 3 28 20.82 54.56 96.6 4 20878.7 261113.0 138212.1 14881.0 30.8 34.7 361.5

Port25 4 23 15.31 53.77 96.3 4 25834.4 193535.0 103443.0 12201.0 0.0 0.0 540.4

Port25 5 28 23.64 62.24 96.7 4 24015.1 320228.0 181177.1 14970.0 92.7 160.4 266.5

containers, the (weekly) profit (per ship) can be increased up to 7%, when compared to the basic

setting. It is not surprising to see that the increase of profit is even more drastic when the demand

can be split, in which case the profit obtained by the basic setting can be improved up to 30%.

6.4. Optimizing Turnaround Time

Finally, we consider the situation in which the turnaround time is simultaneously optimized with

the route through our model presented in Section 5.1. Table 8 shows the basic solution properties,

but only for the instances for which we were able to obtain better solutions than those reported in
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Table 7 Solution features for the splittable demand case.

instance # calls % D1 % D2 Avg. Load [%] fleet profit revenue P̄ z̄ F x̄ Ss̄ Ll̄ C̄ȳ

Port10 1 13 40.96 74.04 95.6 3 22339.0 177546.0 116958.6 6692.0 0.0 0.0 0.0

Port10 2 15 49.45 73.23 81.1 3 24738.2 236776.0 164146.0 7906.0 317.5 317.5 0.0

Port10 3 13 40.77 73.69 96.0 3 23294.7 172486.0 112062.2 6692.0 0.0 0.0 0.0

Port10 4 8 22.36 85.61 92.4 3 20686.3 109935.0 77678.5 4080.0 162.8 132.3 0.0

Port10 5 14 51.18 82.71 91.2 3 25315.0 222315.0 147442.4 7286.0 39.7 79.4 0.0

Port15 1 27 42.65 48.36 96.1 4 12269.0 251163.0 135650.5 14104.0 0.0 0.0 0.0

Port15 2 28 53.39 56.69 95.1 4 25341.8 345044.0 202014.5 14656.0 0.0 0.0 0.0

Port15 3 27 41.72 47.30 96.3 4 13798.2 243040.0 129927.6 14104.0 0.0 0.0 0.0

Port15 4 24 32.00 43.84 97.9 4 22372.6 187031.0 99682.8 12443.0 0.0 0.0 0.0

Port15 5 28 50.07 53.17 94.9 4 15800.0 306669.0 172128.3 14656.0 0.0 0.0 0.0

Port20 1 28 28.79 53.97 96.6 4 19892.2 265796.0 143810.8 14641.0 0.0 0.0 0.0

Port20 2 28 34.03 62.16 96.5 4 33204.6 352991.0 209924.3 14703.0 0.0 0.0 0.0

Port20 3 28 28.68 49.90 97.3 4 21042.6 258966.0 137459.1 14391.0 0.0 0.0 0.0

Port20 4 24 21.50 48.51 97.7 4 27962.3 196422.0 105320.5 12491.0 0.0 0.0 0.0

Port20 5 29 32.42 55.00 96.5 4 24257.9 317593.0 181183.2 15253.0 0.0 0.0 0.0

Port25 1 27 21.35 56.23 97.7 4 21843.2 271251.0 145392.1 14291.0 0.0 0.0 0.0

Port25 2 27 25.12 69.46 97.1 4 34410.7 358870.0 210827.4 14400.0 0.0 0.0 0.0

Port25 3 28 20.76 52.89 97.6 4 23443.9 263531.0 140280.4 14811.0 0.0 0.0 0.0

Port25 4 23 15.82 53.90 97.9 4 29177.5 199621.0 106155.7 12111.0 0.0 0.0 0.0

Port25 5 28 23.82 63.49 97.3 4 26189.8 323896.0 182842.1 14980.0 0.0 0.0 0.0

Table 8 Solution features for the optimal turnaround case. Only improved solution, when compared to those

shown in Table 7 are reported.

instance # calls % D1 % D2 Avg. Load [%] fleet profit revenue P̄ z̄ F x̄ Ss̄ Ll̄ C̄ȳ

Port15 1 14 23.84 75.64 94.3 3 24297.3 182722.0 119454.9 7230.0 0.0 0.0 0.0

Port15 2 15 28.58 80.97 85.5 3 30199.1 244266.0 168829.8 7764.0 0.0 0.0 0.0

Port15 3 14 23.71 75.21 94.7 3 25272.9 177790.0 114578.3 7230.0 0.0 0.0 0.0

Port15 5 14 29.70 85.78 91.4 3 29702.2 229485.0 151524.6 7100.0 0.0 0.0 0.0

Port20 1 13 15.22 85.66 94.5 3 24667.9 181735.0 119415.5 6820.0 0.0 0.0 0.0

Port20 3 14 14.57 77.33 94.9 3 25544.5 176111.0 114780.0 7160.0 0.0 0.0 0.0

Port20 5 14 18.85 85.59 91.5 3 30000.9 230490.0 151793.2 7070.0 0.0 0.0 0.0

Port25 1 13 10.89 85.93 95.1 3 24829.9 181742.0 119657.9 6920.0 0.0 0.0 0.0

Port25 3 14 10.29 77.11 96.4 3 25732.8 175028.0 115078.2 7270.0 0.0 0.0 0.0

Port25 5 14 13.54 85.59 90.5 3 30000.9 230490.0 151793.2 7070.0 0.0 0.0 0.0

Table 7. For 10 instances out of 25, we were able to improve the overall profits, by changing the

turnaround time. More precisely, in all these cases, the optimal solutions are obtained by decreasing

the turnaround time by one week. This clearly reduced the collected revenue, but increased the

net profit, which can be explained by very high capital investments per ship.

7. Conclusion

In this article we studied the design of a route for a liner shipping company that provides regular

service among the sequence of ports on a fixed-schedule basis. The models have been derived

from the perspective of the shipping company that maximizes its revenue, given the estimated
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weekly demands, and under the assumption that the given ordering of ports has to be respected

by the calling sequence. In contrast to the models considered in the previous literature, our models

exploit the pre-ordering of ports in order to reduce the number of decision variables. In addition,

we studied empty container repositioning between the ports and proposed two ways for balancing

empty containers: the first model relies on arc-variables, the second model sees empty containers

as a single-commodity and requires node-variables only.

In an extensive computational study on open benchmark barge shipping instances from the lit-

erature for which the optimal solution values were not known, we managed to prove the optimality

within seconds. We also considered different scenarios and problem variants, and we proposed an

effective way of incorporating them in our models. We finally analyzed the impact of these realis-

tic variants on the achievable profits. The study has shown that: (i) by allowing empty container

repositioning, better profits can be achieved in the unsplittable demand case (ii) with splittable

demands the profits can be further (significantly) increased, and (iii) with letting our model simul-

taneously optimize the turnaround time and the route design, an additional increase of the profit

can be achieved.

Concerning the future work, it remains to be studied how our models can be exploited for

designing different routes for a fleet of ships (not necessarily homogeneous), and how to incorporate

transshipment in the context of outbound-inbound shipping with empty container repositioning.

While in this article we assume a constant speed all along the route, it is well known that speed

optimization could allow for further increase of profits. This challenging setting involves a non-

linear objective function, and an appropriate exact approach built on top of our model(s) remains

to be investigated in the future.
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Appendix. Schematic Representation of Optimal Solutions

In the following, we provide schematic representations for optimal solutions of the five instances with 10

ports for the BCSP with unsplittable demand. Drawings in Figures 7 to 11 show the optimal routes for five

different barge container ships, respectively (cf. Table 2 for their basic characteristics). The solutions are

defined by the upstream and downstream calling sequence and the number of loaded and empty containers

transported between any two ports. Shaded nodes represent called ports, and the notation ”a+ b” refers to

the number of full and empty containers, respectively. The port P1 is at the river mouth, whereas port P10

is furthest port in the upstream direction.
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Figure 7 Optimal route of barge container ship for 10 possibly calling ports and schematic overview of obtained

container flows. Instance Port10 1.

Figure 8 Optimal route of barge container ship for 10 possibly calling ports and schematic overview of obtained

container flows. Instance Port10 2.
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