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Abstract

We improve the well-known result of Bertsimas and Sim presented in (D. Bertsimas and M. Sim.,

“Robust discrete optimization and network flows”, Mathematical Programming, B(98): 49-71, 2003)

regarding the computation of optimal solutions of Robust Combinatorial Optimization problems

with interval uncertainty in the objective function coefficients. We also extend this improvement

to a more general class of Combinatorial Optimization problems with interval uncertainty.
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We address a binary optimization problem on N variables in which both the objective function

coefficients (costs) and the data in the constraints are subject to uncertainty. When only the

costs are subject to uncertainty, a well-known result of Bertsimas and Sim (2003) states that the

Bertsimas & Sim robust counterpart, in the remainder simply called robust counterpart, of the

problem can be solved by solving at most N + 1 instances of the original deterministic problem.

Thus, the robust counterpart of a polynomially solvable binary optimization problem remains

polynomially solvable. For a given level of conservatism 0 < Γ ≤ N , which is interpreted as the

number of coefficients that are expected to present uncertainty, we improve this important result

as follows:

1. When only the cost coefficients are subject to uncertainty, the robust counterpart of the

problem can be solved by solving at most N − Γ + 2 instances of the original deterministic

problem.

2. When only coefficients of a knapsack constraint in the corresponding mathematical program-

ming problem are subject to uncertainty, the robust counterpart of the problem can be solved

by solving at most N − Γ + 2 instances of the original deterministic problem.

3. We also consider a general case in which the set of variables is partitioned into K+L subsets

of size N1, . . . , NK+L (K,L ≥ 0, K + L ≥ 1), where the costs of the variables from the

first K subsets and also coefficients of L knapsack constraints (associated to variables of

remaining subsets) are subject to uncertainty, and to each of the subsets a level of conservatism

0 < Γk ≤ Nk and 0 < Γl ≤ NL, for k ∈ {1, . . . ,K} and l ∈ {1, . . . , L} is associated. Then, the

robust counterpart of the problem can be solved by solving
∏K
k=1(Nk−Γk+2)

∏L
l=1(Nl−Γl+2)

instances of the original deterministic problem.
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To prove these results, we will consider a class of binary optimization problems with two types

of binary variables, each with its own level of conservatism associated with its corresponding co-

efficients. The results 1 and 2 are special cases, and the general result stated above follows by

mathematical induction.

Let us consider the following generic Combinatorial Optimization problem with linear objective

function and two types of binary variables x ∈ {0, 1}n and y ∈ {0, 1}m:

OPTP1 = min

∑
i∈I

cixi +
∑
j∈J

bjyj | Dx + Ey ≤ f and (x,y) ∈ Φ

 , (P1)

where c,b, f ≥ 0, I = {1, 2, . . . , n}, J = {1, 2, . . . ,m}, D and E are real non-zero matrices and Φ

is a generic polyhedral region.

Let us assume now that instead of having known and deterministic parameters ci ∀i ∈ I and bj
∀j ∈ J , we are actually given uncertain intervals [ci, ci + di] ∀i ∈ I and [bj , bj + δj ] ∀j ∈ J . Assume

that variables x and y are ordered so that di ≥ di+1 ∀i ∈ I and dn+1 = 0, δj ≥ δj+1 ∀j ∈ J and

δm+1 = 0. For simplicity of notation we will assume that ΓX ∈ {1, . . . , n} and ΓY ∈ {1, . . . ,m}.
For a given pair (ΓX ,ΓY ), the B&S robust counterpart of this problem is:

ROPTP1(ΓX ,ΓY ) = min

∑
i∈I

cixi + β∗X (ΓX ,x) +
∑
j∈J

bjyj + β∗Y (ΓY ,y) | Dx + Ey ≤ f and (x,y) ∈ Φ

 ,

where β∗X (ΓX ,x) and β∗Y (ΓY ,y) are the corresponding protection functions defined as:

β∗X (ΓX ,x) = max

{∑
i∈I

dixiui |
∑
i∈I

ui ≤ ΓX and ui ∈ [0, 1]∀i ∈ I

}
(1)

and

β∗Y (ΓY ,y) = max

∑
j∈J

δjyjvj |
∑
j∈J

vj ≤ ΓY and vj ∈ [0, 1]∀j ∈ J

 . (2)

These protection functions provide robustness to the solutions in terms of protection of optimality

in presence of a given level of data uncertainty, represented by ΓX and ΓY .

For simplicity of notation let Ω be the set of all the feasible solutions (x,y) satisfying Dx+Ey ≤
f and (x,y) ∈ Φ. After applying strong duality to (1) and (2), the problem ROPTP1 can be

rewritten as

ROPTP1(ΓX ,ΓY ) = min
∑
i∈I

cixi + ΓXθ +
∑
i∈I

hi +
∑
j∈J

bjyj + ΓY λ+
∑
j∈J

kj (3)

subject to

hi + θ ≥ dixi, ∀i ∈ I (4)

kj + λ ≥ δjyj , ∀j ∈ J (5)

hi ≥ 0 ∀i ∈ I, kj ≥ 0 ∀j ∈ J and θ, λ ≥ 0 (6)

(x,y) ∈ Ω. (7)

The following lemma that gives upper bounds for the values of θ and λ is crucial for the results

stated in this work.
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Lemma 1. Given ΓX ∈ {1, . . . , n} and ΓY ∈ {1, . . . ,m}, any optimal solution (x∗,y∗,h∗,k∗, θ∗, λ∗)
of the robust counterpart of (P1) satisfies: θ∗ ∈ [0, dΓX

] and λ∗ ∈ [0, dΓY
].

Proof. Given the structure of constraints hi+θ ≥ dixi, ∀i ∈ I and kj +λ ≥ δjyj , ∀j ∈ J , it follows

that any optimal solution (x∗,y∗,h∗,k∗, θ∗, λ∗) satisfies:

h∗i = max (dix
∗
i − θ∗, 0)

k∗j = max
(
δjy
∗
j − λ∗, 0

)
,

and since xi ∈ {0, 1} and yj ∈ {0, 1}, then it is true that

max (dix
∗
i − θ∗, 0) = max (di − θ∗, 0)x∗i

max
(
δjy
∗
j − λ∗, 0

)
= max (δj − λ∗, 0) y∗j .

Therefore, the objective function of the problem can be rewritten as

ROPTP1(ΓX ,ΓY ) = min
∑
i∈I

cixi+ΓXθ+
∑
i∈I

max (di − θ, 0)xi+
∑
j∈J

bjyj+ΓY λ+
∑
j∈J

max (δj − λ, 0) yj .

Let (x,y) be a feasible solution for a given pair (ΓX ,ΓY ). Let Nx be the set of indices i such

that xi = 1 ∀i ∈ Nx and xi = 0 otherwise. Let I(Nx,ΓX) be a subset of Nx with indices of at most

ΓX elements which have the largest deviations.

Let us assume that |Nx| ≤ ΓX , then we have I(Nx,ΓX) = Nx, which implies that the cost of

each element corresponding to an index i ∈ Nx will be set to its corresponding upper bound ci+di,

i.e., the minimum value ROPTP1(ΓX ,ΓY ) will be reached for θ∗ = dn+1 = 0.

Let us now assume that |Nx| ≥ ΓX + 1. Then, by definition, we have |I(Nx,ΓX)| = ΓX . Let r∗ be

the index of the ΓX -th largest deviation taken into the solution, i.e., r∗ = max{i |i ∈ I(Nx,ΓX)}.
Then we have:∑

i∈Nx

ci +
∑

i∈I(Nx,ΓX)

di =
∑
i∈Nx

ci +
∑

{i∈Nx:i≤r∗}

di −
∑

{i∈Nx:i≤r∗}

dr∗ +
∑

{i∈Nx:i≤r∗}

dr∗

=
∑
i∈Nx

ci +
∑

{i∈Nx:i≤r∗}

(di − dr∗) + ΓXdr∗

=
∑
i∈I

cixi +

r∗∑
i=1

(di − dr∗)xi + ΓXdr∗ .

Note that r∗ ≥ ΓX since |Nx| ≥ ΓX + 1. Therefore, the minimum value ROPTP1(ΓX ,ΓY ) will be

reached for θ∗ = dr where r ≥ ΓX , and hence, θ∗ ∈ [0, dΓX
].

By following the same arguments one can also show that λ∗ ∈ [0, dΓY
] for any optimal solution

of ROPTP1(ΓX ,ΓY ).

The following lemma provides an algorithmic scheme to solve ROPTP1(ΓX ,ΓY ) by solving a

finite number of nominal (deterministic) problems.

Lemma 2. Given ΓX ∈ {1, . . . , n} and ΓY ∈ {1, . . . ,m}, the robust counterpart of the generic
problem (P1) can be solved by solving (n− ΓX + 2)(m− ΓY + 2) nominal problems

ROPTP1(ΓX ,ΓY ) = min
r∈{ΓX ,...,n+1}
s∈{ΓY ,...,m+1}

Gr,s,
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where for r ∈ {ΓX , . . . , n+ 1} and s ∈ {ΓY , . . . ,m+ 1}:

Gr,s = ΓXdr + ΓY δs + min
(x,y)∈Ω

(∑
i∈I

cixi +

r∑
i=1

(di − dr)xi +
∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj

)
.

Proof. Using the result of Lemma 1 we can rewrite the robust counterpart of (P1) as

ROPTP1(ΓX ,ΓY ) = min
∑
i∈I

cixi + ΓXθ +
∑
i∈I

max (di − θ, 0)xi +
∑
j∈J

bjyj + ΓY λ+
∑
j∈J

max (δj − λ, 0) yj

subject to θ ≤ dΓX
, λ ≤ dΓY

and (4)-(7).

As it is done in (Bertsimas and Sim, 2003), we find the optimal values of θ and λ by using

a decomposition approach. We consider a decomposition of the real interval [0, dΓX
] in [0, dn],

[dn, dn−1], . . ., [dΓX+1, dΓX
] with respect to the di deviations, and a decomposition of the real

interval [0, δΓY
] in [0, δm], [δm, δm−1], . . ., [δΓY +1, δΓY

] with respect to the δj deviations. Observe

that for an arbitrary θ ∈ [dr, dr−1] and λ ∈ [δs, δs−1] we have:

∑
i∈I

max(di − θ, 0)xi =

r−1∑
i=1

(di − θ)xi and
∑
j∈J

max(δj − λ, 0)yj =

s−1∑
j=1

(δj − λ)yj

Therefore, ROPTP1(ΓX ,ΓY ) = min r∈{ΓX ,...,n+1}
s∈{ΓY ,...,m+1}

Gr,s where for r ∈ {ΓX , . . . , n+ 1} and s ∈

{ΓY , . . . ,m+ 1}

Gr,s = min
∑
i∈I

cixi + ΓXθ +
r−1∑
i=1

(di − θ)xi +
∑
j∈J

bjyj + ΓY λ+
s−1∑
i=1

(δj − λ) yj , (8)

where θ ∈ [dr, dr−1], λ ∈ [δs, δs−1] and (x,y) ∈ Ω. Since we are optimizing a linear function of θ over

the interval [dr, dr−1] and also a linear function for λ over the interval [δs, δs−1], the optimal value of

Gr,s is obtained for (θ, λ) ∈ {(dr, δs), (dr−1, δs), (dr, δs−1), (dr−1, δs−1)}. So, for r ∈ {ΓX , . . . , n+ 1}
and s ∈ {ΓY , . . . ,m+ 1}:

Gr,s = min

ΓXdr + ΓY δs + min
(x,y)∈Ω

∑
i∈I

cixi +

r−1∑
i=1

(di − dr)xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs) yj

 ,

ΓXdr−1 + ΓY δs + min
(x,y)∈Ω

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1)xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs) yj

 ,

ΓXdr + ΓY δs−1 + min
(x,y)∈Ω

∑
i∈I

cixi +

r−1∑
i=1

(di − dr)xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs−1) yj

 ,

ΓXdr−1 + ΓY δs−1 + min
(x,y)∈Ω

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1)xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs−1) yj


= min

ΓXdr + ΓY δs + min
(x,y)∈Ω

∑
i∈I

cixi +

r∑
i=1

(di − dr)xi +
∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj

 ,

ΓXdr−1 + ΓY δs + min
(x,y)∈Ω

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1)xi +
∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj

 ,

ΓXdr + ΓY δs−1 + min
(x,y)∈Ω

∑
i∈I

cixi +

r∑
i=1

(di − dr)xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs−1) yj

 ,

ΓXdr−1 + ΓY δs−1 + min
(x,y)∈Ω

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1)xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs−1) yj

 .
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Therefore,

ROPTP1(ΓX ,ΓY ) = min

ΓXdΓX
+ ΓY δΓY

+ min
(x,y)∈Ω

∑
i∈I

cixi +
∑
j∈J

bjyj

 , . . . ,

ΓXdr + ΓY δs + min
(x,y)∈Ω

∑
i∈I

cixi +
r∑
i=1

(di − dr)xi +
∑
j∈J

bjyj +
s∑
j=1

(δj − δs) yj

 , . . . ,

min
(x,y)∈Ω

∑
i∈I

cixi +
∑
i∈I

dixi +
∑
j∈J

bjyj +
∑
j∈J

δjyj

 ,
which is what we wanted to prove.

Consider now the following variant of (P1), problem (P2):

OPTP2 = min

∑
i∈I

cixi |
∑
j∈J

bjyj ≤ B, Dx + Ey ≤ f and (x,y) ∈ Φ

 , (P2)

where B is a constant such that B ∈ R≥0. Given ΓX ∈ {1, . . . , n} and ΓY ∈ {1, . . . ,m}, the robust
counterpart of (P2) is:

ROPTP2(ΓX ,ΓY ) = min

∑
i∈I

cixi + β∗X (ΓX ,x) |
∑
j∈J

bjyj + β∗Y (ΓY ,y) ≤ B, Dx + Ey ≤ f and (x,y) ∈ Φ

 .

In this case, β∗Y (ΓY ,y) provides protection of feasibility in presence of a level of uncertainty given

by ΓY . This problem can be rewritten as

ROPTP2(ΓX ,ΓY ) = min
∑
i∈I

cixi + ΓXθ +
∑
i∈I

hi

subject to∑
j∈J

bjyj + ΓY λ+
∑
j∈J

kj ≤ B (9)

(4)-(7)

The following lemma extends the result of Lemma 2 for the robust counterpart of (P2).

Lemma 3. Given ΓX ∈ {1, . . . , n} and ΓY ∈ {1, . . . ,m}, any optimal solution (x∗,y∗,h∗,k∗, θ∗, λ∗)
of the robust counterpart of (P2) satisfies: θ∗ ∈ [0, dΓX

] and λ∗ ∈ [0, dΓY
].

Proof. From Lemma 2 it follows that θ∗ ∈ [0, dΓX
]. We now show that λ∗ ∈ [0, δΓY

].

Constraint (9) can be written as∑
j∈J

bjyj + ΓY λ+
∑
j∈J

max (δj − λ, 0) yj ≤ B. (10)

Let (x,y) be a feasible solution for a given ΓX and a given ΓY . Let My be a set of indices j such

that yj = 1 ∀j ∈ My and yj = 0 otherwise. Let J(My,ΓY ) be a subset of My with at most ΓY
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elements which have the largest deviations. Since (x,y) is a feasible solution, then the following

holds: ∑
j∈My

bj +
∑

j∈J(My,ΓY )

δj ≤ B.

Let us assume that |My| ≤ ΓY , then we have J(My,ΓY ) = My, which implies that the cost of each

element corresponding to index j ∈ My will be set to its corresponding upper bound bj + δj , and

hence constraint (10) is satisfied for λ = dm+1 = 0.

Let us now assume that |My| ≥ ΓY + 1. Then, by definition, we have |J(My,ΓY )| = ΓY . Let

s∗ = max{j |j ∈ J(My,ΓY )}. So∑
j∈My

bj +
∑

j∈J(My,ΓY )

δj =
∑
j∈My

bj +
∑

{j∈My:j≤s∗}

δj −
∑

{j∈My:j≤s∗}

δs∗ +
∑

{j∈My:j≤s∗}

δs∗

=
∑
j∈My

bj +
∑

{j∈My:j≤s∗}

(δj − δs∗) + ΓY δs∗

=
∑
j∈J

bjyj +

s∗∑
j=1

(δj − δs∗)yj + ΓY δs∗ ≤ B.

Note that s∗ ≥ ΓY since |My| ≥ ΓY + 1, and therefore constraint (9) will be satisfied for all λ = δs
such that s ≥ ΓY . Therefore for any feasible solution we have λ ∈ [0, δΓY

].

Lemma 4. Given ΓX ∈ {1, . . . , n} and ΓY ∈ {1, . . . ,m}, the robust counterpart of the generic
problem (P2) can be obtained by solving (n− ΓX + 2)(m− ΓY + 2) nominal problems, i.e.

ROPTP2(ΓX ,ΓY ) = min
r∈{ΓX ,...,n+1}
s∈{ΓY ,...,m+1}

Hr,s,

where for r ∈ {ΓX , . . . , n+ 1} and s ∈ {ΓY , . . . ,m+ 1}:

Hr,s = ΓXdr + min
(x,y)∈Ω

(∑
i∈I

cixi +

r∑
i=1

(di − dr)xi

∣∣∣∣∣∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj + ΓY δs ≤ B

)
.

Proof. Similar to the proof of Lemma 2.

The presented results are important when solving robust counterparts of some well-known com-

binatorial optimization problems in which different levels of conservatism are associated to disjoint

subsets of binary variables. For example, in Prize-Collecting Problems (e.g., TSP, Steiner Trees),

binary variables are associated to edges and nodes of a graph, and we might associate different levels

of conservatism to their corresponding coefficients, costs and prizes, respectively. Other prominent

examples include: facility location problems, where location and assignment decisions need to be

taken, or vehicle routing problems, involving routing and assignment decision variables.
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