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Abstract We improve the well-known result of Bertsimas and Sim presented in (D. Bertsimas and

M. Sim., “Robust discrete optimization and network flows”, Mathematical Programming, B(98):

49-71, 2003) regarding the computation of optimal solutions of Robust Combinatorial Optimiza-

tion problems with interval uncertainty in the objective function coefficients. We also extend this

improvement to a more general class of Combinatorial Optimization problems with interval uncer-

tainty.

Keywords Robust Combinatorial Optimization Problems · Bertsimas & Sim Algorithm.

1. Introduction and Motivation

We address a general class of Combinatorial Optimization problems in which both the objective

function coefficients and the constraint coefficients are subject to interval uncertainty. When un-

certainty has to be taken into consideration, Robust Optimization (RO) arises as methodological

alternative to deal with it. The Bertsimas & Sim Robust (B&S) Optimization approach, introduced

in [Bertsimas and Sim(2003)], is one of the most important approaches devised to incorporate this
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type of uncertainty into the decision process. By means of protection functions, the obtained solu-

tions are endowed with protection, i.e., they are robust, in terms of feasibility and/or optimality for

a given level of conservatism denoted by a parameter ΓX , defined by the decision maker. When the

coefficients associated with a set of n variables are subject to uncertainty, the level of conservatism is

interpreted as the number of coefficients that are expected to present uncertainty, i.e., 0 < ΓX ≤ n.

For the case that the uncertain coefficients are only present in the objective function, a well-

known result of [Bertsimas and Sim(2003)] states that the robust counterpart of the problem can be

computed by solving at most n+ 1 instances of the original deterministic problem. Thus, the robust

counterpart of a polynomially solvable binary optimization problem remains polynomially solvable.

Our Contribution In this paper we propose some improvements and extensions to the algorithmic

result presented in [Bertsimas and Sim(2003)]. For the case studied in their paper, we show that

instead of solving n+ 1 deterministic problems, the robust counterpart can be computed by solving

n−ΓX + 2 deterministic problems (Lemma 1); this improvement is particularly interesting for those

cases for which a high level of conservatism, i.e., a large value of ΓX , is suitable. Additionally, we

show that if a knapsack-type constraint is part of a problem and m of its coefficients are affected

by uncertainty, an equivalent algorithmic approach can be applied, and the robust counterpart can

be computed by solving m− ΓY + 2 deterministic problems (Lemma 2), for 0 < ΓY ≤ m. Likewise,

we show that if the uncertain coefficients in the objective function are associated with two disjoint

sets of variables, of size n and m respectively, the robust problem can be computed by solving

of (n − ΓX + 2)(m − ΓY + 2) deterministic problems (Lemma 3), giving to the decision maker

the flexibility to define different levels of conservatism to different sets of uncertain parameters. A

similar result is also shown for the case that uncertainty is present in a set of n objective function

coefficients and in a set of m coefficients of a knapsack-type constraint (Lemma 4). Combining the

previous results, we provide a more general result which considers the case in which the uncertain

coefficients in the objective function are associated with K disjoint sets of variables and there are

L knapsack-type constraints (each of them involving a different set of variables) with uncertain

coefficients. For this type of problems, we show that the robust counterpart can be computed by

solving a strongly-polynomial number of deterministic problems (Theorem 1).

The presented results are important when solving robust counterparts of some well-known com-

binatorial optimization problems in which different levels of conservatism are associated to disjoint

subsets of binary variables. For example, in Prize-Collecting Network Design Problems (PCNDPs)

(e.g., TSP, Steiner Trees), binary variables are associated to edges and nodes of a graph, and we

might associate different levels of conservatism to their corresponding coefficients, costs and prizes,

respectively. Besides defining the objective function as the sum of edge costs and node prizes, PC-

NDPs are frequently modeled using knapsack-type Budget or Quota constraints, and our results

can be used in these cases as well, when the coefficient of these constraints are subject to interval

uncertainty.
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Similarly, in Facility Location problems, location and allocation decisions need to be taken. Each

of these decisions involves disjoint sets of variables and, possibly uncertain, coefficients. In these

conditions, different levels of conservatism might be suitable for different sets of coefficients. Other

prominent examples of problems within this framework are generalized vehicle routing problems, in-

volving routing, assignment, location, inventory decision variables and more; for which the presented

result can be used for solving the corresponding robust counterparts.

The viability of the proposed methods strongly relies on the efficacy to solve the deterministic

counterparts.

2. Main Results

Let us consider the following generic Combinatorial Optimization problem with linear objective

function and binary variables x ∈ {0, 1}n:

OPTP1 = min

{∑
i∈I

cixi | x ∈ Π

}
, (P1)

where c ≥ 0, I = {1, 2, . . . , n} and Π is a generic polyhedral region.

Let us assume now that instead of having known and deterministic parameters ci, ∀i ∈ I, we are

actually given uncertain intervals [ci, ci + di], ∀i ∈ I. Assume that variables x are ordered so that

di ≥ di+1, ∀i ∈ I, and dn+1 = 0.

For a given level of conservatism ΓX ∈ {1, . . . , n}, the robust formulation of (P1) is defined

in [Bertsimas and Sim(2003)] as:

ROPTP1(ΓX) = min

{∑
i∈I

cixi + β∗X (ΓX ,x) | x ∈ Π

}
, (RP1)

where β∗X (ΓX ,x) is the corresponding protection function defined as:

β∗X (ΓX ,x) = max

{∑
i∈I

dixiui |
∑
i∈I

ui ≤ ΓX and ui ∈ [0, 1]∀i ∈ I

}
. (1)

This protection function endows robustness to the solutions in terms of protection of optimality in

presence of a given level of data uncertainty, represented by ΓX .

In the context of RO, (P1) is referred to as the nominal problem and (RP1) as the corresponding

robust counterpart.

After applying strong duality to (1), problem (RP1) can be rewritten as

ROPTP1(ΓX) = min
∑
i∈I

cixi + ΓXθ +
∑
i∈I

hi (2)

s.t. hi + θ ≥ dixi, ∀i ∈ I (3)

hi ≥ 0, ∀i ∈ I and θ ≥ 0 (4)

x ∈ Π. (5)
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The previous formulation of the robust counterpart of (P1) has been presented in [Bertsimas

and Sim(2003)] and the authors provide a combinatorial algorithm that computes ROPTP1(ΓX) by

solving n+ 1 nominal problems (Theorem 3, p. 56). The following lemma provides an improvement

to this result by reducing the number of iterations of the algorithmic procedure.

Lemma 1 Given ΓX ∈ {1, . . . , n}, the problem (RP1), the robust counterpart of problem (P1), can

be computed by solving (n− ΓX + 2) nominal problems in the following scheme:

ROPTP1(ΓX) = min
r∈{ΓX ,...,n+1}

Gr,

where for r ∈ {ΓX , . . . , n+ 1}:

Gr = ΓXdr + min
x∈Π

(∑
i∈I

cixi +

r∑
i=1

(di − dr)xi

)
.

Proof. The first part of the proof consists of showing that any optimal solution (x∗,h∗, θ∗) of (RP1)

satisfies: θ∗ ∈ [0, dΓX ].

Given the structure of constraints hi + θ ≥ dixi, ∀i ∈ I, it follows that any optimal solution

(x∗,h∗, θ∗) satisfies:

h∗i = max (dix
∗
i − θ∗, 0) ,

and since xi ∈ {0, 1}, then it is true that

max (dix
∗
i − θ∗, 0) = max (di − θ∗, 0)x∗i .

Therefore, the objective function of (2)-(5) can be rewritten as

ROPTP1(ΓX) = min
∑
i∈I

cixi + ΓXθ +
∑
i∈I

max (di − θ, 0)xi.

Let x be a feasible solution for a given ΓX . Let Nx be the set of indices i ∈ I such that xi = 1. Let

I(Nx, ΓX) be a subset of Nx associated with (at most) the ΓX largest di values.

Let us assume that |Nx| ≤ ΓX , then we have I(Nx, ΓX) = Nx, which implies that the cost of each

element corresponding to an index i ∈ Nx will be set to its corresponding upper bound ci + di. This

means that if x is optimal, the minimum value ROPTP1(ΓX) can be calculated as
∑
i∈Nx

(ci + di),

which implies that θ∗ = dn+1 = 0. Let us now assume that |Nx| ≥ ΓX + 1. Then, by definition, we

have |I(Nx, ΓX)| = ΓX . Let r∗ be the index of the ΓX -th largest di value taken into the solution,

i.e., r∗ = max{i |i ∈ I(Nx, ΓX)}. Then we have:∑
i∈Nx

ci +
∑

i∈I(Nx,ΓX)

di =
∑
i∈Nx

ci +
∑

{i∈Nx:i≤r∗}

di −
∑

{i∈Nx:i≤r∗}

dr∗ +
∑

{i∈Nx:i≤r∗}

dr∗

=
∑
i∈Nx

ci +
∑

{i∈Nx:i≤r∗}

(di − dr∗) + ΓXdr∗

=
∑
i∈I

cixi +

r∗∑
i=1

(di − dr∗)xi + ΓXdr∗ .
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Note that r∗ ≥ ΓX since |Nx| ≥ ΓX+1. Therefore, the minimum value ROPTP1(ΓX) will be reached

for θ∗ = dr, where r ≥ ΓX , and hence, θ∗ ∈ [0, dΓX ], which completes the first part of the proof.

We now present the second part of the proof, where the previous result is plugged into the

procedure devised in [Bertsimas and Sim(2003)], and we find the optimal values of θ by using an

equivalent decomposition approach. We decompose of the real interval [0, dΓX ] into [0, dn], [dn, dn−1],

. . ., [dΓX+1, dΓX ]. Observe that for an arbitrary θ ∈ [dr, dr−1] we have:∑
i∈I

max(di − θ, 0)xi =

r−1∑
i=1

(di − θ)xi.

Therefore, ROPTP1(ΓX) = minr∈{ΓX ,...,n+1}G
r where for r ∈ {ΓX , . . . , n+ 1}

Gr = min
∑
i∈I

cixi + ΓXθ +

r−1∑
i=1

(di − θ)xi,

where θ ∈ [dr, dr−1] and x ∈ Π. Since we are optimizing a linear function of θ over the interval
[dr, dr−1], the optimal value of Gr is obtained either by θ = dr or by θ = dr−1. So, for r ∈
{ΓX , . . . , n+ 1}:

Gr = min

ΓXdr + min
x∈Π

∑
i∈I

cixi +

r−1∑
i=1

(di − dr)xi

 , ΓXdr−1 + min
x∈Π

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1)xi


= min

ΓXdr + min
x∈Π

∑
i∈I

cixi +

r∑
i=1

(di − dr)xi

 , ΓXdr−1 + min
x∈Π

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1)xi

 .
Therefore,

ROPTP1(ΓX) = min

ΓXdΓX + min
x∈Π

∑
i∈I

cixi

 , . . . , ΓXdr + min
x∈Π

∑
i∈I

cixi +

r∑
i=1

(di − dr)xi

 , . . . ,

min
x∈Π

∑
i∈I

cixi +
∑
i∈I

dixi

 ,
which completes the proof.

Consider now the following problem that we will refer to as (P2):

OPTP2 = min

∑
i∈I

cixi |
∑
j∈J

bjyj ≤ B and (x,y) ∈ Ψ

 , (P2)

where y ∈ {0, 1}m are decision variables, B ∈ R≥0 is a constant, b ≥ 0, J = {1, 2, . . . ,m}, and Ψ is

a generic polyhedral region.

Let us assume that c is known with certainty, but instead, the elements of b are given as

uncertain intervals [bj , bj + δj ], ∀j ∈ J , and that the variables are ordered so that δj ≥ δj+1, ∀j ∈ J ,

and δm+1 = 0. Given ΓY ∈ {1, . . . ,m}, the robust counterpart of the nominal problem (P2), given

the interval uncertainty of vector b, is:

ROPTP2(ΓY ) = min

∑
i∈I

cixi |
∑
j∈J

bjyj + β∗Y (ΓY ,y) ≤ B and (x,y) ∈ Ψ

 . (RP2)
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In this case, β∗Y (ΓY ,y) provides protection of feasibility in presence of a level of conservatism given

by ΓY . This problem can be rewritten as

ROPTP2(ΓY ) = min
∑
i∈I

cixi (6)

s.t
∑
j∈J

bjyj + ΓY λ+
∑
j∈J

kj ≤ B (7)

kj + λ ≥ δjyj , ∀j ∈ J (8)

kj ≥ 0, ∀j ∈ J and λ ≥ 0 (9)

(x,y) ∈ Ψ. (10)

The following lemma extends for (RP2) the result of Theorem 3 in [Bertsimas and Sim(2003)], and

adapts the result of Lemma 1.

Lemma 2 Given ΓY ∈ {1, . . . ,m}, the problem (RP2), the robust counterpart of problem (P2), can

be computed by solving (m− ΓY + 2) nominal problems, in the following scheme:

ROPTP2(ΓY ) = min
s∈{ΓY ,...,m+1}

Hs,

where for s ∈ {ΓY , . . . ,m+ 1}:

Hs = min
(x,y)∈Ψ

∑
i∈I

cixi |
∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj + ΓY δs ≤ B

 .

Proof. The core of the proof consists of showing that for any feasible solution of (6)-(10) we have

λ ∈ [0, δΓY ].

For any feasible solution of (6)-(10) holds that kj = max (δjyj − λ, 0) ; thus, constraint (7) can

be written as ∑
j∈J

bjyj + ΓY λ+
∑
j∈J

max (δj − λ, 0) yj ≤ B. (11)

Let (x,y) be a feasible solution for a given ΓX and a given ΓY . Let My be a set of indices j ∈ J
such that yj = 1. Let J(My, ΓY ) be a subset of My associated with (at most) the ΓY largest values

δj . Since (x,y) is a feasible solution, then the following holds:∑
j∈My

bj +
∑

j∈J(My,ΓY )

δj ≤ B.

Let us assume that |My| ≤ ΓY , then we have J(My, ΓY ) = My, which implies that the cost of each

element corresponding to index j ∈ My will be set to its corresponding upper bound bj + δj , and

hence constraint (11) is satisfied for λ = dm+1 = 0.
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Let us now assume that |My| ≥ ΓY + 1. Then, by definition, we have |J(My, ΓY )| = ΓY . Let

s∗ = max{j |j ∈ J(My, ΓY )}. So∑
j∈My

bj +
∑

j∈J(My,ΓY )

δj =
∑
j∈My

bj +
∑

{j∈My:j≤s∗}

δj −
∑

{j∈My:j≤s∗}

δs∗ +
∑

{j∈My:j≤s∗}

δs∗

=
∑
j∈My

bj +
∑

{j∈My:j≤s∗}

(δj − δs∗) + ΓY δs∗

=
∑
j∈J

bjyj +

s∗∑
j=1

(δj − δs∗)yj + ΓY δs∗ ≤ B.

Note that s∗ ≥ ΓY since |My| ≥ ΓY + 1, and therefore constraint (7) will be satisfied for all λ = δs

such that s ≥ ΓY . Therefore for any feasible solution we have λ ∈ [0, δΓY ].

By following similar arguments as those presented in the decomposition approach of the poof of

Lemma 1, it holds that

ROPTP2(ΓY ) = min

 min
(x,y)∈Ψ

∑
i∈I

cixi |
∑
j∈J

bjyj + ΓY δΓY ≤ B

 , . . . ,

min
(x,y)∈Ψ

∑
i∈I

cixi |
∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj + ΓY δs ≤ B

 , . . . ,

min
(x,y)∈Ψ

∑
i∈I

cixi |
∑
j∈J

bjyj +
∑
j∈J

δjyj ≤ B

 ,
and the proof is completed.

We now present a second extension of the algorithm proposed in [Bertsimas and Sim(2003)]. Let

us consider now the following nominal problem:

OPTP3 = min

∑
i∈I

cixi +
∑
j∈J

bjyj | (x,y) ∈ Ψ

 . (P3)

In case that the elements of both vectors c and b are given in terms of closed intervals, the corre-

sponding robust counterpart (for a pair (ΓX , ΓY )) is given by

ROPTP3(ΓX , ΓY ) = min
∑
i∈I

cixi + ΓXθ +
∑
i∈I

hi +
∑
j∈J

bjyj + ΓY λ+
∑
j∈J

kj (12)

s.t. (3),(4),(8),(9) and (x,y) ∈ Ψ. (13)

The following result extends Lemma 1 and provides an algorithmic procedure to solve (12)-(13).

Lemma 3 Given ΓX ∈ {1, . . . , n} and ΓY ∈ {1, . . . ,m}, the robust counterpart of problem (P3) can

be computed by solving (n− ΓX + 2)(m− ΓY + 2) nominal problems as follows:

ROPTP3(ΓX , ΓY ) = min
r∈{ΓX ,...,n+1}
s∈{ΓY ,...,m+1}

Gr,s,
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where for r ∈ {ΓX , . . . , n+ 1} and s ∈ {ΓY , . . . ,m+ 1}:

Gr,s = ΓXdr + ΓY δs + min
(x,y)∈Ψ

∑
i∈I

cixi +

r∑
i=1

(di − dr)xi +
∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj

 .

Proof. Using an analogous analysis to the one in the proofs of Lemma 1 and 2, we have that for any

optimal solution (x∗,y∗, θ∗, λ∗), it holds θ∗ ∈ [0, dΓX ] and λ∗ ∈ [0, dΓY ]. Then, by decomposition, the

optimal can be found as ROPTP3(ΓX , ΓY ) = minr∈{ΓX ,...,n+1}
s∈{ΓY ,...,m+1}

Gr,s where for r ∈ {ΓX , . . . , n+ 1}

and s ∈ {ΓY , . . . ,m+ 1}

Gr,s = min
∑
i∈I

cixi + ΓXθ +

r−1∑
i=1

(di − θ)xi +
∑
j∈J

bjyj + ΓY λ+

s−1∑
i=1

(δj − λ) yj , (14)

for which θ ∈ [dr, dr−1], λ ∈ [δs, δs−1] and (x,y) ∈ Ψ . Since we are optimizing a linear function

of θ over the interval [dr, dr−1] and also a linear function for λ over the interval [δs, δs−1], the

optimal value of Gr,s is obtained for (θ, λ) ∈ {(dr, δs), (dr−1, δs), (dr, δs−1), (dr−1, δs−1)}. So, for

r ∈ {ΓX , . . . , n+ 1} and s ∈ {ΓY , . . . ,m+ 1}:

G
r,s

= min

ΓXdr + ΓY δs + min
(x,y)∈Ψ

∑
i∈I

cixi +

r−1∑
i=1

(di − dr) xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs) yj

 ,

ΓXdr−1 + ΓY δs + min
(x,y)∈Ψ

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1) xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs) yj

 ,

ΓXdr + ΓY δs−1 + min
(x,y)∈Ψ

∑
i∈I

cixi +

r−1∑
i=1

(di − dr) xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs−1) yj

 ,

ΓXdr−1 + ΓY δs−1 + min
(x,y)∈Ψ

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1) xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs−1) yj


= min

ΓXdr + ΓY δs + min
(x,y)∈Ψ

∑
i∈I

cixi +

r∑
i=1

(di − dr) xi +
∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj

 ,

ΓXdr−1 + ΓY δs + min
(x,y)∈Ψ

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1) xi +
∑
j∈J

bjyj +
s∑
j=1

(δj − δs) yj

 ,

ΓXdr + ΓY δs−1 + min
(x,y)∈Ψ

∑
i∈I

cixi +
r∑
i=1

(di − dr) xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs−1) yj

 ,

ΓXdr−1 + ΓY δs−1 + min
(x,y)∈Ψ

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1) xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs−1) yj

 .
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Therefore,

ROPTP3(ΓX , ΓY ) = min

ΓXdΓX + ΓY δΓY + min
(x,y)∈Ψ

∑
i∈I

cixi +
∑
j∈J

bjyj

 , . . . ,

ΓXdr + ΓY δs + min
(x,y)∈Ψ

∑
i∈I

cixi +

r∑
i=1

(di − dr)xi +
∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj

 , . . . ,

min
(x,y)∈Ψ

∑
i∈I

cixi +
∑
i∈I

dixi +
∑
j∈J

bjyj +
∑
j∈J

δjyj

 ,
which completes the proof.

As a complementary result, one can observe that if in (P2) the cost vector c is also subject to

interval uncertainty (along with the coefficient vector b), the corresponding robust counterpart is

given by

ROPTP4(ΓX , ΓY ) = min
∑
i∈I

cixi + ΓXθ +
∑
i∈I

hi (15)

s.t. (3), (4), (7), (8), (9) and (x,y) ∈ Ψ. (16)

Combining the results of Lemma 1 and 2, we have the following result,

Lemma 4 Given ΓX ∈ {1, . . . , n} and ΓY ∈ {1, . . . ,m}, the robust problem (15)-(16) can be solved

by solving (n− ΓX + 2)(m− ΓY + 2) nominal problems as follows:

ROPTP4(ΓX , ΓY ) = min
r∈{ΓX ,...,n+1}
s∈{ΓY ,...,m+1}

Hr,s,

where for r ∈ {ΓX , . . . , n+ 1} and s ∈ {ΓY , . . . ,m+ 1}:

Hr,s = ΓXdr + min
(x,y)∈Ψ

∑
i∈I

cixi +
r∑
i=1

(di − dr)xi |
∑
j∈J

bjyj +
s∑
j=1

(δj − δs) yj + ΓY δs ≤ B

 .

We omit the proof of this result as it follows from the proofs of Lemma 2 and 3.

3. General Result

In light of Lemmas 3 and 4, we now generalize the previous results considering a more general

Combinatorial Optimization problem under interval uncertainty and propose a discrete algorithm

to solve its robust counterpart.

Let us consider a case in which the set of binary variables is partitioned into K + L subsets

given by (x1, . . . ,xK ,y1, . . . ,yL), associated with sets of indices (I1, . . . , IK , J1, . . . , JL). Vari-

ables (x1, . . . ,xK) appear in the objective function with non-negative cost vectors (c1, . . . , cK),

and (y1, . . . ,yL) variables appear in L disjoint knapsack constraints with non-negative coefficients
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(b1, . . . ,bL) and non-negative right-hand-side bounds (B1, . . . , BL). Let Ψ ′ be a generic polyhedron

containing the feasibility conditions for (x1, . . . ,xK ,y1, . . . ,yL). With these elements we define nom-

inal problem (P5) as

OPTP5 = min
(x1,...,yL)∈Ψ ′

∑
i∈I1

c1i x
1
i + . . .+

∑
i∈IK

cKi x
K
i |

∑
j∈J1

b1jy
1
j ≤ B1, . . . ,

∑
j∈JL

bLj y
L
j ≤ BL

 . (P5)

We assume now that all elements of the cost vectors (c1, . . . , cK) and all elements of the knapsack

coefficients (b1, . . . ,bL) are subject to interval uncertainty; the cost coefficient of variable xki is taken

from [cki , c
k
i + dki ], for each i ∈ Ik and k ∈ K = {1, . . . ,K}, and the coefficient of variable ylj is taken

from [blj , b
l
j + δlj ], for each j ∈ J l and l ∈ L = {1, . . . , L}. Assume that variables (x1, . . . ,yL) are

ordered so that dki ≥ dki+1 and dk|Ik|+1 = 0, for all i ∈ Ik and k ∈ K, and δlj ≥ δlj+1 and δl|Jl|+1 = 0,

for all j ∈ J l and l ∈ L.

To each set of cost coefficients we associate a level of conservatism 0 ≤ Γ kX ≤ |Ik|, for all k ∈ K,

and to each knapsack constraint we associate a level of conservatism 0 ≤ Γ lY ≤ |J l|, for all l ∈ L.

The following Theorem unifies the previous results.

Theorem 1 For given 0 ≤ Γ kX ≤ |Ik|, for all k ∈ K, and 0 ≤ Γ lY ≤ |J l|, for all l ∈ L, the robust

counterpart of (P5), ROPTP5(Γ 1
X , . . . , Γ

K
X , Γ

1
Y , . . . , Γ

L
Y ), can be computed by solving∏

k∈K

(|Ik| − Γ kX + 2)
∏
l∈L

(|J l| − Γ lY + 2)

problems given by

ROPTP5(Γ 1
X , . . . , Γ

K
X , Γ

1
Y , . . . , Γ

L
Y ) = min

r1∈{Γ 1
X ,...,|I

1|+1}
...

...
sL∈{ΓLY ,...,|J

L|+1}

F (r1,...,rK ,s1,...,sL),

where for r1 ∈ {Γ 1
X , . . . , |I1|+1}, . . . , rK ∈ {ΓKX , . . . , |IK |+1} and s1 ∈ {Γ 1

Y , . . . , |J1|+1}, . . . , sL ∈
{ΓLY , . . . , |JL|+ 1}, we have that

F (r1,...,rK ,s1,...,sL) =Γ 1
xdr1 + . . .+ ΓKx drK + min

(x1,...,yK)∈Ψ ′
{ϕ1(r1) + . . .+ ϕK(rK) |

ξ1(s1) ≤ B1, . . . , ξL(sL) ≤ BL},

such that

ϕl(rk) =
∑
i∈Ik

cki x
k
i +

rk∑
i=1

(
dki − dkrk

)
xki , ∀k ∈ K,

and

ξl(sl) =
∑
j∈Jl

bljy
l
j +

sl∑
j=1

(
δlj − δlsl

)
ylj , ∀l ∈ L.
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Proof. The robust counterpart of (P5) can be written as

ROPTP5(Γ 1
X , . . . , Γ

K
X , Γ

1
Y , . . . , Γ

L
Y ) = min

∑
k∈K

∑
i∈Ik

cki x
k
i + Γ kXθ

k +
∑
i∈Ik

hki

 (17)

s.t.
∑
j∈Jl

bljy
l
j + Γ lY λ

l +
∑
j∈Jl

klj ≤ Bl, l ∈ L (18)

hki + θk ≥ dki xki and θk ≥ 0, ∀i ∈ Ik, k ∈ K (19)

klj + λl ≥ δljylj and λl ≥ 0, ∀l ∈ J l, l ∈ L (20)

hki ≥ 0, ∀i ∈ Ik, k ∈ K (21)

klj ≥ 0, ∀j ∈ J l, l ∈ L. (22)

From Lemma 1 and 2, one can show by mathematical induction that any optimal solution for (17)-

(22) satisfies θk
∗ ∈ [0, dk

ΓkX
], for each k ∈ K, and λl

∗ ∈ [0, δl
Γ lY

], for each l ∈ L. Finally, mathematical

induction is applied to the previously used decomposition approach to derive the result for computing

ROPTP5(Γ 1
X , . . . , Γ

L
Y ).

As stressed in the Introduction, several Combinatorial Optimization problems are particular

cases of (P5), and if interval uncertainty in their parameters is brought into play, the algorithmic

procedure described by Theorem 1 could be an alternative for solving their robust counterparts.
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